问题描述
我发现了线程,它为背包算法提供了伪代码有2个背包.我试过用C ++实现它,但是它不能像预期的那样工作.这是代码:
I've found thread which provides pseudo-code for knapsack algorithm with 2 knapsacks. I've tried implement it in C++, but it doesn't work as suppose. Here's code:
#include <cstdio>
#define MAX_W1 501
#define MAX_W2 501
int maximum(int a, int b, int c) {
int max = a>b?a:b;
return c>max?c:max;
}
int knapsack[MAX_W1][MAX_W2] = {0};
int main() {
int n, s1, s2, gain, weight; // items, sack1, sack2, gain, cost
scanf("%d %d %d", &n, &s1, &s2);
// filing knapsack
for (int i = 0; i < n; i++) {
scanf("%d %d", &gain, &weight);
for (int w1 = s1; w1 >= weight; w1--) {
for (int w2 = s2; w2 >= weight; w2--) {
knapsack[w1][w2] = maximum(
knapsack[w1][w2], // we have best option
knapsack[w1 - weight][w2] + gain, // put into sack one
knapsack[w1][w2 - weight] + gain // put into sack two
);
}
}
}
int result = 0;
// searching for result
for (int i = 0; i <= s1; i++) {
for (int j = 0; j <= s2; j++) {
if (knapsack[i][j] > result) {
result = knapsack[i][j];
}
}
}
printf("%d\n", result);
return 0;
}
例如用于以下输入:
5 4 3
6 2
3 2
4 1
2 1
1 1
我有输出:
13
显然这是错误的,因为我可以将所有物品(第一个袋子中的1,2放进第二个袋子中,剩下的放到第二个袋子中),总和为16.对于伪代码错误的任何解释,我将不胜感激.
Obviously it's wrong because I can take all items (1,2 into first bag and rest to second bag) and sum is 16.I would be grateful for any explanation where I get pseudo-code wrong.
我几乎没有做任何更新,因为有些人在理解输入格式方面存在问题:
- 第一行包含3个数字,如下所示:项目数,一个袋子的容量,两个袋子的容量
- 以后有n行,每行包含2个数字:收益,第i个项目的成本.
- 假设麻袋不能大于500.
推荐答案
您使用的算法似乎不正确,因为它只会考虑对象恰好适合两个麻袋的情况.我对您的代码进行了以下更改,并且现在可以正常运行:
The algorithm you're using appears incorrect, because it will only consider cases where the object happens to fit in both sacks. I made the following changes to your code and it operates correctly now:
#include <algorithm>
using std::max;
int max3(int a, int b, int c) {
return max(a, max(b, c));
}
和
for (int w1 = s1; w1 >= 0; w1--) {
for (int w2 = s2; w2 >= 0; w2--) {
if (w1 >= weight && w2 >= weight) // either sack has room
{
knapsack[w1][w2] = max3(
knapsack[w1][w2], // we have best option
knapsack[w1 - weight][w2] + gain, // put into sack one
knapsack[w1][w2 - weight] + gain // put into sack two
);
}
else if (w1 >= weight) // only sack one has room
{
knapsack[w1][w2] = max(
knapsack[w1][w2], // we have best option
knapsack[w1 - weight][w2] + gain // put into sack one
);
}
else if (w2 >= weight) // only sack two has room
{
knapsack[w1][w2] = max(
knapsack[w1][w2], // we have best option
knapsack[w1][w2 - weight] + gain // put into sack two
);
}
}
}
这篇关于两个袋子的背包算法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!