【BZOJ3648】寝室管理
Description
T64有一个好朋友,叫T128。T128是寄宿生,并且最近被老师叫过去当宿管了。宿管可不是一件很好做的工作,碰巧T128有一个工作上的问题想请T64帮忙解决。T128的寝室条件不是很好,所以没有很多钱来装修。礼间寝室仅由n-1条双向道路连接,而且任意两间寝室之间都可以互达。最近,T128被要求对一条路径上的所有寝室进行管理,这条路径不会重复经过某个点或某条边。但他不记得是哪条路径了。他只记得这条路径上有不少于k个寝室。于是,他想请T64帮忙数一下,有多少条这样的路径满足条件。嗯…还有一个问题。由于最近有一些熊孩子不准晚上讲话很不爽,他们决定修筑一条“情报通道”,如果通道建成,寝室就变成了一个N个点N条边的无向图。并且,经过“情报通道”的路径也是合法的。T128心想:通道建成之前,T64还有一个高效的算法帮我数路径条数,但是通道建成之后,他还有办法吗?对,T64手忙脚乱,根本数不清有多少条路径。于是他找到了你。
Input
第一行为三个正整数N,M,K(2 ≤ K ≤ N),代表有n间寝室,m条边连接它们n-1 ≤ m ≤ N;
m= n-1意味着“情报遁道”未被修好;m=n意味着“情报通道”已被修好),以及题目描述中的K。
接下来m行,每行两个正整数z,y,代表第x间寝室与第y间寝室之间有一条双向边。
Output
仅包含一个整数,代表经过至少K间寝室的路径条数。
Sample Input
5 5 2
1 3
2 4
3 5
4 1
5 2
1 3
2 4
3 5
4 1
5 2
Sample Output
20
HINT
N≤100000
K≤N
M=N
题解:现将环上的所有边都拆开,对于不经过环上的边的路径,我们可以对每个子树都用树分治解决,具体做法可以采用树形DP式+树状数组或容斥式+双指针,复杂度都是$O(nlog^2_n)$的。
对于经过环的路径,我们乱@%#^&^^搞即可。
好吧具体细节还是见代码吧。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn=100010;
int f[maxn<<1],to[maxn<<1],next[maxn<<1],head[maxn],vis[maxn],s[maxn<<1],siz[maxn],tim[maxn<<1],d[maxn],p[maxn];
vector<int> ch[maxn];
int n,m,K,mn,tot,cnt,rt,now,len;
ll ans;
queue<int> q;
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
inline void updata(int x,int v)
{
for(int i=x;i;i-=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
s[i]+=v;
}
}
inline int query(int x)
{
if(x<=0) x=1;
int ret=0,i;
for(i=x;i<=2*n;i+=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
ret+=s[i];
}
return ret;
}
void getrt(int x,int fa)
{
siz[x]=1;
int tmp=0,i;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa&&!vis[to[i]])
getrt(to[i],x),tmp=max(tmp,siz[to[i]]),siz[x]+=siz[to[i]];
tmp=max(tmp,tot-siz[x]);
if(tmp<mn) mn=tmp,rt=x;
}
int getdep(int x,int fa,int dep)
{
f[dep]++;
int i,tmp=dep;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa&&!vis[to[i]]) tmp=max(tmp,getdep(to[i],x,dep+1));
return tmp;
}
void solve(int x)
{
vis[x]=1,now++;
int i,j,tmp;
for(i=head[x];i!=-1;i=next[i]) if(!vis[to[i]])
{
tmp=getdep(to[i],x,1);
for(j=1;j<=tmp;j++) ans+=(ll)(query(K-j-1)+(j>=K-1))*f[j];
for(j=1;j<=tmp;j++) updata(j,f[j]),f[j]=0;
}
for(i=head[x];i!=-1;i=next[i]) if(!vis[to[i]])
mn=1<<30,tot=siz[to[i]],getrt(to[i],x),solve(rt);
}
void dfs(int x)
{
p[++len]=x,d[x]=-2;
for(int i=0;i<(int)ch[x].size();i++) if(d[ch[x][i]]==-1) dfs(ch[x][i]);
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
//freopen("bz3648.in","r",stdin);
n=rd(),m=rd(),K=rd();
int i,j,u,a,b,tmp;
memset(head,-1,sizeof(head));
if(n>m)
{
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
tot=n,mn=1<<30,getrt(1,0),solve(rt);
printf("%lld",ans);
return 0;
}
for(i=1;i<=n;i++) a=rd(),b=rd(),ch[a].push_back(b),ch[b].push_back(a),d[a]++,d[b]++;
for(i=1;i<=n;i++) if(d[i]==1) q.push(i);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=0;i<(int)ch[u].size();i++)
{
d[ch[u][i]]--;
if(!d[ch[u][i]]) add(u,ch[u][i]),add(ch[u][i],u);
if(d[ch[u][i]]==1) q.push(ch[u][i]);
}
}
for(i=1;i<=n;i++) if(d[i]>1) u=i,d[i]=-1;
dfs(u);
for(i=1;i<=len;i++) for(j=0;j<(int)ch[p[i]].size();j++) if(d[ch[p[i]][j]]!=-2)
add(ch[p[i]][j],p[i]),add(p[i],ch[p[i]][j]);
for(i=1;i<=len;i++) tot=n,mn=1<<30,getrt(p[i],0),solve(rt);
now++;
memset(vis,0,sizeof(vis));
for(i=1;i<=len;i++)
{
tmp=getdep(p[i],0,1);
for(j=1;j<=tmp;j++) ans+=(ll)query(K-(i+j)+1+n)*f[j];
for(j=1;j<=tmp;j++) updata(j-i+n,f[j]),f[j]=0;
}
now++;
for(i=1;i<=len;i++)
{
tmp=getdep(p[i],0,1);
for(j=1;j<=tmp;j++) ans+=(ll)query(K+1-len+i-j)*f[j];
for(j=1;j<=tmp;j++) updata(i+j,f[j]),f[j]=0;
}
printf("%lld",ans);
return 0;
}