批量梯度下降的逻辑回归可以参考这篇文章:http://blog.csdn.net/pakko/article/details/37878837

看了一些Scala语法后,打算看看MlLib的机器学习算法的并行化,那就是逻辑回归,找到package org.apache.spark.mllib.classification下的LogisticRegressionWithSGD这个类,直接搜train()函数。

  def train(
input: RDD[LabeledPoint],
numIterations: Int,
stepSize: Double,
miniBatchFraction: Double,
initialWeights: Vector): LogisticRegressionModel = {
new LogisticRegressionWithSGD(stepSize, numIterations, 0.0, miniBatchFraction)
.run(input, initialWeights)
}

发现它调用了GeneralizedLinearAlgorithm下的一个run函数,这个类GeneralizedLinearAlgorithm是个抽象类,并且在GeneralizedLinearAlgorithm.scala文件下,并且类LogisticRegressionWithSGD是继承了GeneralizedLinearAlgorithm

  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {

    if (numFeatures < 0) {
numFeatures = input.map(_.features.size).first()
} if (input.getStorageLevel == StorageLevel.NONE) {
logWarning("The input data is not directly cached, which may hurt performance if its"
+ " parent RDDs are also uncached.")
} // Check the data properties before running the optimizer
if (validateData && !validators.forall(func => func(input))) {
throw new SparkException("Input validation failed.")
} /**
* Scaling columns to unit variance as a heuristic to reduce the condition number:
*
* During the optimization process, the convergence (rate) depends on the condition number of
* the training dataset. Scaling the variables often reduces this condition number
* heuristically, thus improving the convergence rate. Without reducing the condition number,
* some training datasets mixing the columns with different scales may not be able to converge.
*
* GLMNET and LIBSVM packages perform the scaling to reduce the condition number, and return
* the weights in the original scale.
* See page 9 in http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
*
* Here, if useFeatureScaling is enabled, we will standardize the training features by dividing
* the variance of each column (without subtracting the mean), and train the model in the
* scaled space. Then we transform the coefficients from the scaled space to the original scale
* as GLMNET and LIBSVM do.
*
* Currently, it's only enabled in LogisticRegressionWithLBFGS
*/
val scaler = if (useFeatureScaling) {
new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features))
} else {
null
} // Prepend an extra variable consisting of all 1.0's for the intercept.
// TODO: Apply feature scaling to the weight vector instead of input data.
val data =
if (addIntercept) {
if (useFeatureScaling) {
input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache()
} else {
input.map(lp => (lp.label, appendBias(lp.features))).cache()
}
} else {
if (useFeatureScaling) {
input.map(lp => (lp.label, scaler.transform(lp.features))).cache()
} else {
input.map(lp => (lp.label, lp.features))
}
} /**
* TODO: For better convergence, in logistic regression, the intercepts should be computed
* from the prior probability distribution of the outcomes; for linear regression,
* the intercept should be set as the average of response.
*/
val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) {
appendBias(initialWeights)
} else {
/** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */
initialWeights
} val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) //这里进入优化 val intercept = if (addIntercept && numOfLinearPredictor == 1) {
weightsWithIntercept(weightsWithIntercept.size - 1)
} else {
0.0
} var weights = if (addIntercept && numOfLinearPredictor == 1) {
Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1))
} else {
weightsWithIntercept
} /**
* The weights and intercept are trained in the scaled space; we're converting them back to
* the original scale.
*
* Math shows that if we only perform standardization without subtracting means, the intercept
* will not be changed. w_i = w_i' / v_i where w_i' is the coefficient in the scaled space, w_i
* is the coefficient in the original space, and v_i is the variance of the column i.
*/
if (useFeatureScaling) {
if (numOfLinearPredictor == 1) {
weights = scaler.transform(weights)
} else {
/**
* For `numOfLinearPredictor > 1`, we have to transform the weights back to the original
* scale for each set of linear predictor. Note that the intercepts have to be explicitly
* excluded when `addIntercept == true` since the intercepts are part of weights now.
*/
var i = 0
val n = weights.size / numOfLinearPredictor
val weightsArray = weights.toArray
while (i < numOfLinearPredictor) {
val start = i * n
val end = (i + 1) * n - { if (addIntercept) 1 else 0 } val partialWeightsArray = scaler.transform(
Vectors.dense(weightsArray.slice(start, end))).toArray System.arraycopy(partialWeightsArray, 0, weightsArray, start, partialWeightsArray.size)
i += 1
}
weights = Vectors.dense(weightsArray)
}
} // Warn at the end of the run as well, for increased visibility.
if (input.getStorageLevel == StorageLevel.NONE) {
logWarning("The input data was not directly cached, which may hurt performance if its"
+ " parent RDDs are also uncached.")
} // Unpersist cached data
if (data.getStorageLevel != StorageLevel.NONE) {
data.unpersist(false)
} createModel(weights, intercept)
}

在上面代码中的optimizer.optimize,传入了数据data和初始化的theta,然后optimizer在LogisticRegressionWithSGD中被初始化为:

class LogisticRegressionWithSGD private[mllib] (
private var stepSize: Double,
private var numIterations: Int,
private var regParam: Double,
private var miniBatchFraction: Double)
extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { private val gradient = new LogisticGradient()
private val updater = new SquaredL2Updater()
@Since("0.8.0")
override val optimizer = new GradientDescent(gradient, updater)
.setStepSize(stepSize)
.setNumIterations(numIterations)
.setRegParam(regParam)
.setMiniBatchFraction(miniBatchFraction)
override protected val validators = List(DataValidators.binaryLabelValidator) /**
* Construct a LogisticRegression object with default parameters: {stepSize: 1.0,
* numIterations: 100, regParm: 0.01, miniBatchFraction: 1.0}.
*/
@Since("0.8.0")
def this() = this(1.0, 100, 0.01, 1.0) override protected[mllib] def createModel(weights: Vector, intercept: Double) = {
new LogisticRegressionModel(weights, intercept)
}
}

optimizer被赋值为GradientDescent(gradient, updater),然后又看GradientDescent这个类:

class GradientDescent private[spark] (private var gradient: Gradient, private var updater: Updater)
extends Optimizer with Logging { private var stepSize: Double = 1.0
private var numIterations: Int = 100
private var regParam: Double = 0.0
private var miniBatchFraction: Double = 1.0
private var convergenceTol: Double = 0.001 ...
@DeveloperApi
def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {
val (weights, _) = GradientDescent.runMiniBatchSGD(
data,
gradient,
updater,
stepSize,
numIterations,
regParam,
miniBatchFraction,
initialWeights,
convergenceTol)
weights
}
}

发现调用的是随机梯度下降的miniBatch方法,runMiniBatchSGD:

  def runMiniBatchSGD(
data: RDD[(Double, Vector)],
gradient: Gradient,
updater: Updater,
stepSize: Double,
numIterations: Int,
regParam: Double,
miniBatchFraction: Double,
initialWeights: Vector,
convergenceTol: Double): (Vector, Array[Double]) = { // convergenceTol should be set with non minibatch settings
if (miniBatchFraction < 1.0 && convergenceTol > 0.0) {
logWarning("Testing against a convergenceTol when using miniBatchFraction " +
"< 1.0 can be unstable because of the stochasticity in sampling.")
} val stochasticLossHistory = new ArrayBuffer[Double](numIterations)
// Record previous weight and current one to calculate solution vector difference var previousWeights: Option[Vector] = None
var currentWeights: Option[Vector] = None val numExamples = data.count() // if no data, return initial weights to avoid NaNs
if (numExamples == 0) {
logWarning("GradientDescent.runMiniBatchSGD returning initial weights, no data found")
return (initialWeights, stochasticLossHistory.toArray)
} if (numExamples * miniBatchFraction < 1) {
logWarning("The miniBatchFraction is too small")
} // Initialize weights as a column vector
var weights = Vectors.dense(initialWeights.toArray)
val n = weights.size /**
* For the first iteration, the regVal will be initialized as sum of weight squares
* if it's L2 updater; for L1 updater, the same logic is followed.
*/
var regVal = updater.compute(
weights, Vectors.zeros(weights.size), 0, 1, regParam)._2 //计算正则化的值 var converged = false // indicates whether converged based on convergenceTol
var i = 1
while (!converged && i <= numIterations) { //迭代开始,在小于最大迭代数的时候不断运行
val bcWeights = data.context.broadcast(weights)
// Sample a subset (fraction miniBatchFraction) of the total data
// compute and sum up the subgradients on this subset (this is one map-reduce)
val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i)
.treeAggregate((BDV.zeros[Double](n), 0.0, 0L))(
seqOp = (c, v) => {
// c: (grad, loss, count), v: (label, features)
val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1)) //计算一个batch中每条数据的梯度
(c._1, c._2 + l, c._3 + 1)
},
combOp = (c1, c2) => {
// c: (grad, loss, count)
(c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3) //将batch中所有数据的梯度相加,损失函数值相加,记录batch的size
}) if (miniBatchSize > 0) {
/**
* lossSum is computed using the weights from the previous iteration
* and regVal is the regularization value computed in the previous iteration as well.
*/
stochasticLossHistory.append(lossSum / miniBatchSize + regVal) //原来损失函数是这样计算batch的总损失值除以batchSize再加上正则化值
val update = updater.compute(
weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble), //更新权重和下次的正则化值
stepSize, i, regParam)
weights = update._1
regVal = update._2 previousWeights = currentWeights
currentWeights = Some(weights)
if (previousWeights != None && currentWeights != None) {
converged = isConverged(previousWeights.get,
currentWeights.get, convergenceTol)
}
} else {
logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero")
}
i += 1
} logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
stochasticLossHistory.takeRight(10).mkString(", "))) (weights, stochasticLossHistory.toArray) }

发现要对Batch中每一条数据计算梯度,调用的是gradient.compute函数,对于二值分类:

  override def compute(
data: Vector,
label: Double,
weights: Vector,
cumGradient: Vector): Double = {
val dataSize = data.size // (weights.size / dataSize + 1) is number of classes
require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1)
numClasses match {
case 2 =>
/**
* For Binary Logistic Regression.
*
* Although the loss and gradient calculation for multinomial one is more generalized,
* and multinomial one can also be used in binary case, we still implement a specialized
* binary version for performance reason.
*/
val margin = -1.0 * dot(data, weights)
val multiplier = (1.0 / (1.0 + math.exp(margin))) - label
axpy(multiplier, data, cumGradient) //梯度的计算就是multiplier * data即,(h(x) - y)*x
if (label > 0) {
// The following is equivalent to log(1 + exp(margin)) but more numerically stable.
MLUtils.log1pExp(margin) //返回损失函数值
} else {
MLUtils.log1pExp(margin) - margin
}
... //下面有多分类,还没看
}

利用treeAggregate并行化batch所有数据后,得到gradientSum要除以miniBatchSize,然后进入updater.compute进行权重theta和正则化值的更新,为了下一次迭代:

@DeveloperApi
class SquaredL2Updater extends Updater {
override def compute(
weightsOld: Vector,
gradient: Vector,
stepSize: Double,
iter: Int,
regParam: Double): (Vector, Double) = {
// add up both updates from the gradient of the loss (= step) as well as
// the gradient of the regularizer (= regParam * weightsOld)
// w' = w - thisIterStepSize * (gradient + regParam * w)
// w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient //这个就是权重更新的迭代式子,这个是L2正则化后的更新,神奇的是(1 - thisIterStepSize * regParam)
val thisIterStepSize = stepSize / math.sqrt(iter) //记得更新式子不是w‘ = w - alpha*gradient alpha就是学习率也就是thisIterStepSize
val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector //你会发现alpha = thisIterStepSize = 1/sqrt(iter)也就是随着迭代次数越多学习率越低,迈出的步伐越小
brzWeights :*= (1.0 - thisIterStepSize * regParam)
brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
val norm = brzNorm(brzWeights, 2.0) (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm) //正则化值就是w'的二范数的平方乘以正则化参数regParam乘以0.5
}
}
04-16 23:37