一. 逻辑回归
1.背景:使用逻辑回归预测学生是否会被大学录取。
2.首先对数据进行可视化,代码如下:
pos = find(y==); %找到通过学生的序号向量
neg = find(y==); %找到未通过学生的序号向量
plot(X(pos,),X(pos,),'k+','LineWidth',,'MarkerSize',); %使用+绘制通过学生
hold on;
plot(X(neg,),X(neg,),'ko','MarkerFaceColor','y','MarkerSize',); %使用o绘制未通过学生
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
3.sigmoid函数的实现,代码如下:
function g = sigmoid(z) %函数文件名为sigmoid.m
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
temp=-z;
temp=e.^temp;
temp=temp+;
temp=./temp;
g=temp;
end
4.代价函数的实现代码如下:
function [J, grad] = costFunction(theta, X, y) %函数名文件名为costFunction.m
m = length(y); % number of training examples % You need to return the following variables correctly
J = /m*(-(y')*log(sigmoid(X*theta))-(1-y)'*log(-sigmoid(X*theta))); %计算代价函数
grad = zeros(size(theta));
grad = /m*X'*(sigmoid(X*theta)-y); %求梯度
end
5.代替梯度下降的优化方法fminunc(),代码如下:
% 参数GradObj设置为on表示,通知函数fminunc()我们的代价函数costFunction()可以返回代价值和梯度值,函数fminunc()可以直接使用梯度值进行计算
options = optimset('GradObj', 'on', 'MaxIter', );
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
6.使用计算出的θ值做预测,预测函数如下:
function p = predict(theta, X) m = size(X, ); % Number of training examples
p = zeros(m, );
p=floor(sigmoid(X*theta).*); %因为使用了floor()函数,所以函数值要扩大二倍
二. 正规化逻辑回归
1.特征映射(Feature Mapping):使用两个特征(x,x)组合出更多的特征如xx,x,x等。代码如下:
function out = mapFeature(X1, X2) degree = ;
out = ones(size(X1(:,)));
for i = :degree
for j = :i
out(:, end+) = (X1.^(i-j)).*(X2.^j); %一共生成27项
end
end
end
2.计算在逻辑回归中经过正规化的代价函数和梯度:
function [J, grad] = costFunctionReg(theta, X, y, lambda) m = length(y); % number of training examples
J = /m*(-(y')*log(sigmoid(X*theta))-(1-y)'*log(-sigmoid(X*theta)))+(/(*m))*lambda*(sum(theta .^) - theta()^); %正规化时不用对θ1正规化
grad = zeros(size(theta) grad = /m*X'*(sigmoid(X*theta)-y)+lambda*theta/m;
grad() = grad()-lambda*theta()/m; end