题目描述
一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级
别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车
次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注
意:起始站和终点站自然也算作事先已知需要停靠的站点)
例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于
停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。
现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的
级别。
输入输出格式
输入格式:
输入文件为 level.in。
第一行包含 2 个正整数 n, m,用一个空格隔开。
第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si
≤ n),表示第 i 趟车次有 si 个停
靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个
空格隔开。输入保证所有的车次都满足要求。
输出格式:
输出文件为 level.out。
输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。
输入输出样例
输入样例#1:
Case 1:
9 2
4 1 3 5 6
3 3 5 6 Case 2:
9 3
4 1 3 5 6
3 3 5 6
3 1 5 9
输出样例#1:
Case 1:
2 Case 2:
3
说明
对于 20%的数据,1 ≤ n, m ≤ 10;
对于 50%的数据,1 ≤ n, m ≤ 100;
对于 100%的数据,1 ≤ n, m ≤ 1000。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=1e3+,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,g[N][N],vis[N],lst[N],ind[N],ans=;
int st[N],top=,buf[N],top2=;
void toposort(){
for(int i=;i<=n;i++) if(ind[i]==) st[++top]=i;
while(top){
ans++;//printf("hi %d %d\n",ans,del);
while(top){
int u=st[top--]; //printf("u %d\n",u);
for(int v=;v<=n;v++) if(g[u][v]){
ind[v]--; //printf("v %d %d\n",v,ind[v]);
if(ind[v]==) buf[++top2]=v;
}
}
for(int i=;i<=top2;i++) st[i]=buf[i];
top=top2;
top2=;
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
s=read();
memset(vis,,sizeof(vis));
for(int j=;j<=s;j++) lst[j]=read(),vis[lst[j]]=;
for(int j=lst[];j<=lst[s];j++) if(!vis[j])
for(int k=;k<=s;k++) if(!g[lst[k]][j]) g[lst[k]][j]=,ind[j]++;
}
toposort();
printf("%d",ans);
}