题目描述 Description
小毛终于到达宝藏点,他意外地发现有一个外星人(名叫Pluto)。宝藏是一些太空黄金,有n堆排成一行,每堆中有xi颗黄金。小毛和Pluto决定轮流从中取出黄金,规则是每次只能从最左边或最右边取出一堆黄金,直到所有黄金被取出。小毛先取,两人都以最优策略进行选取,求两人的最后所得。
输入描述 Input Description
第一行是正数n(≤500);第二行为n个正整数xi(≤300),表示每堆黄金的个数。
输出描述 Output Description
仅两个整数,分别表示小毛和Pluto的得分,以空格隔开。
样例输入 Sample Input
6
4 7 2 9 5 2
样例输出 Sample Output
18 11
正解:DP
解题报告:
看到这是博弈的时候有一点慌。。。好吧其实只用了思想。
显然DP可行,f[i][j]表示从i到j的区间的最优策略,最后f[1][n]即先手得分,总和减掉这个最优值即为后手得分。
转移也比较好想,只是有一个地方比较神。显然由从左端选了一堆或者从右端选了一堆转移过来,而我们取得是较小的那个值,因为我们需要后手决策尽可能贡献小。
细节看代码吧。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#ifdef WIN32
#define OT "%I64d"
#else
#define OT "%lld"
#endif
using namespace std;
typedef long long LL;
const int MAXN = ;
int n;
int a[MAXN],sum[MAXN];
int f[MAXN][MAXN];//f[i][j]表示从i到j的最优策略得分 inline int getint()
{
int w=,q=;
char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} inline void work(){
n=getint();
for(int i=;i<=n;i++) a[i]=getint(),f[i][i]=a[i],sum[i]=sum[i-]+a[i];
for(int len=;len<=n-;len++)
for(int i=;i<=n-len;i++)
f[i][i+len]=sum[i+len]-sum[i-]-min(f[i+][i+len],f[i][i+len-]);//减去部分是后手的决策最小值
printf("%d %d",f[][n],sum[n]-f[][n]);//总和减去先手最优决策即为后手得分
} int main()
{
work();
return ;
}