本文介绍了在大 pandas 数据框中提取具有最大值的行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在这里问类似的问题: Python:使用groupby
A similar question is asked here:Python : Getting the Row which has the max value in groups using groupby
但是,即使该组中有多个具有最大值的记录,我也只需要每组一个记录.
However, I just need one record per group even if there are more than one record with maximum value in that group.
在下面的示例中,我需要一条记录用于"s2".对我来说,哪一个都没关系.
In the example below, I need one record for "s2". For me it doesn't matter which one.
>>> df = DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'count':[3,2,5,10,10,6]})
>>> df
Mt Sp Value count
0 s1 a 1 3
1 s1 b 2 2
2 s2 c 3 5
3 s2 d 4 10
4 s2 e 5 10
5 s3 f 6 6
>>> idx = df.groupby(['Mt'])['count'].transform(max) == df['count']
>>> df[idx]
Mt Sp Value count
0 s1 a 1 3
3 s2 d 4 10
4 s2 e 5 10
5 s3 f 6 6
>>>
推荐答案
您可以使用first
In [14]: df.groupby('Mt').first()
Out[14]:
Sp Value count
Mt
s1 a 1 3
s2 c 3 5
s3 f 6 6
更新
设置as_index=False
即可实现目标
In [28]: df.groupby('Mt', as_index=False).first()
Out[28]:
Mt Sp Value count
0 s1 a 1 3
1 s2 c 3 5
2 s3 f 6 6
再次更新
很抱歉误解了您的意思.如果您要在组中拥有最大数量的书,可以先对其进行排序
Update Again
Sorry for misunderstanding what you mean. You can sort it first if you want the one with max count in a group
In [196]: df.sort('count', ascending=False).groupby('Mt', as_index=False).first()
Out[196]:
Mt Sp Value count
0 s1 a 1 3
1 s2 e 5 10
2 s3 f 6 6
这篇关于在大 pandas 数据框中提取具有最大值的行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!