SciPy线性代数包是使用优化的ATLAS LAPACK和BLAS库构建的,具有高效的线性代数运算能力。

线性代数包里的函数,操作对象都是二维数组。

线性方程组求解

scipy.linalg.solve 函数可用于解线性方程。例如,对于线性方程$a * x + b * y = z$,求出未知数x, y值。

示例

解下面的联立方程组:

$$

x + 3y + 5z = 10 \

2x + 5y + z = 8 \

2x + 3y + 8z = 3

$$

上面的方程组,可以用矩阵表示为:

$$

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right] =

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

$$

利用矩阵求解上面方程组,如下图所示:

$$

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right]

=

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]^{-1}

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

= \frac{1}{25}

\left[

\begin{matrix}

-232 \

129 \

19

\end{matrix}

\right]

=

\left[

\begin{matrix}

-9.28 \

5.16 \

0.76

\end{matrix}

\right]

$$

下面我们使用scipy来求解。

scipy.linalg.solve函数接受两个输入,数组a和数组b,数组a表示系数,数组b表示等号右侧值,求出的解将会放在一个数组里返回。

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3]) # 求解
x = linalg.solve(a, b) # 输出解值
print (x)

输出

[-9.28  5.16  0.76]

计算行列式

矩阵A的行列式表示为$|A|$,行列式计算是线性代数中的常见运算。

SciPy中,可以使用det()函数计算行列式,它接受一个矩阵作为输入,返回一个标量值,即该矩阵的行列式值。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 计算行列式
x = linalg.det(A) # 输出结果
print (x)

输出

-4.0

求取特征值与特征向量

求取矩阵的特征值、特征向量,也是线性代数中的常见计算。

通常,可以根据下面的关系,求取矩阵(A)的特征值(λ)、特征向量(v):

$$ Av = λv $$

scipy.linalg.eig 函数可用于计算特征值与特征向量,函数返回特征值和特征向量。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 求解
l, v = linalg.eig(A) # 打印特征值
print('特征值')
print (l) # 打印特征向量
print('特征向量')
print (v)

上面的程序将生成以下输出。

特征值
[-0.35234996+0.j 11.35234996+0.j]
特征向量
[[-0.76642628 -0.43192981]
[ 0.64233228 -0.90190722]]

SVD奇异值分解

奇异值分解(SVD)是现在比较常见的算法之一,也是数据挖掘工程师、算法工程师必备的技能之一。 假设A是一个$M×N$的矩阵,那么通过矩阵分解将会得到$U,Σ,VT$(V的转置)是一个$N×N$的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。

$$ A_{m\times{n}} = U_{m\times{m}} Σ_{m\times{n}} V_{n\times{n}}^T$$

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2) # 输出原矩阵
print('原矩阵')
print(a) # 求解
U, s, Vh = linalg.svd(a) # 输出结果
print('奇异值分解')
print(U, "#U")
print(Vh, "#Vh")
print(s, "#s")

上面的程序将生成以下输出。

原矩阵
[[ 1.81840014+0.16615057j -0.47446573-2.36327076j]
[-0.19366846-0.44489565j -0.03227288+0.02260894j]
[-0.91921239-0.99340761j -1.33606096+0.40858722j]]
奇异值分解
[[-0.84399035+0.03548862j -0.1574924 +0.44602345j 0.08723906-0.23466874j]
[ 0.03893388+0.08672055j -0.19156838-0.45118633j -0.02718865-0.86600053j]
[ 0.23121352+0.47320699j -0.71944217+0.13562682j 0.41089761+0.13336765j]] #U
[[-0.63461867+0.j 0.05670247+0.77074248j]
[ 0.77282543+0.j 0.04656219+0.63290822j]] #Vh
[3.55734783 0.7144458 ] #s
05-28 13:22