Matlab 非线性规划问题模型代码-LMLPHP

非线性规划问题的基本内容

当目标函数为最小值时,上述问题可以写成如下形式:

\[\min z={F(x)}
\]

\[\text { s.t. }
\left\{\begin{array}{l}
{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}}
\\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}}
\\ G(x) \leqslant 0
\\ H_{\mathrm{eq}}(x) = 0
\\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}
\end{array}\right.
\]

其中

\(F(x)\) 为非线性目标函数

\(G(x)\) 为非线性不等式约束条件

\(H_\mathrm{eq}(x)\) 为非线性等式约束条件

\(\mathbf{X}\) 为决策变量向量

\(\mathbf{A}\) 为线性不等式系数矩阵

\(\mathbf{B}\) 为线性不等式右端常数向量

\(\mathbf{A}_\mathrm{eq}\) 为线性等式系数矩阵

\(\mathbf{B}_\mathrm{eq}\) 为线性等式右端常数向量

\(\mathbf{L B}\) 为决策变量下界向量

\(\mathbf{U B}\) 为决策变量上界向量

Matlab模型代码

调用形式

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) % 统一形式
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(F,X0,A,B,Aeq,Beq,LB,UB,NONLCON) % 线性目标函数,包含非线性约束
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(@(X)MYOBJ(X),X0,A,B,Aeq,Beq,LB,UB,@(X)MYCON(X)) % 自己定义目标函数和非线性约束函数
% 目标函数
function F = MYOBJ(X)
F = ......
% 非线性约束函数
function [G,Heq] = MYCON(X)
G = ..... % 非线性不等式约束条件
Heq = ..... % 非线性等式约束条件

输入变量

  • FUN 为目标函数,可以自己定义,输入变量X,输出目标值
  • X0 为初始解
  • A 为不等式约束系数矩阵(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
  • B 为不等式右端常数向量(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
  • Aeq 为等式约束系数矩阵
  • Beq 为等式右端常数向量
  • LB 为决策变量下界向量
  • UB为决策变量上界向量
  • NONLCON 为非线性约束,可以自己定义,其中包括非线性不等式约束,非线性等式约束两种约束。输入变量X,输出不等式计算值,等式计算值

在调用时,输入参数不存在时,可以将其输入用 [] 空矩阵表示。

输出变量

  • X 为最优解
  • FVAL 为最优目标值
  • EXITFLAG 为运行结束标志,当等于1时,表示程序收敛于解 X;当等于0时,表示程序运行次数到达最大;当小于0时,说明情况较多
  • OUTPUT 为程序迭代次数
  • LAMBDA 为解X相关的Largrange乘子和影子价格

案例演示

目标函数与约束条件

\[\min f(x)=x_{1}^{2}+x_{2}^{2}+8$$ $$\text { s.t. }\left\{\begin{array}{l}{x_{1}^{2}-x_{2} \geq 0} \\ {-x_{1}-x_{2}^{2}+2=0} \\ {x_{1}, x_{2} \geq 0}\end{array}\right.
\]

Matlab程序

clc
clear
close all
x0=rand(2,1); % 随机产生初始解
A=[];
B=[];
Aeq=[];
Beq=[];
LB=[0,0];
UB=[];
[x,fval,exitflag]=fmincon(@(x)myobj(x),x0,A,B,Aeq,Beq,LB,UB,@(x)mycon(x)) % 目标函数
function F = myobj(x)
F = x(1)^2+x(2)^2+8;
end
% 非线性约束函数
function [G,Heq] = mycon(x)
G = -x(1)^2+x(2);
Heq = -x(1)-x(2)^2+2;
end

运行结果

x =

    1.0000
1.0000 fval = 10.0000 exitflag = 1
05-20 21:37