RT-DTER 引入用于低分辨率图像和小物体的新 CNN 模块 SPD-Conv-LMLPHP

论文地址:https://arxiv.org/pdf/2208.03641v1.pdf
代码地址:https://github.com/labsaint/spd-conv

卷积神经网络(CNN)在图像分类、目标检测等计算机视觉任务中取得了巨大的成功。然而,在图像分辨率较低或对象较小的更困难的任务中,它们的性能会迅速下降。
这源于现有CNN体系结构中一个有缺陷但却很常见的设计,即使用strided convolution和/或池化层,这导致了细粒度信息的丢失和较低效率的特征表示的学习。为此,我们提出了一种新的CNN模块,称为SPD-Conv,以取代每个strided convolution和每个池化层(从而完全消除了它们)。SPD-Convspace-to-depth (SPD)层和non-strided convolution(Conv)层组成,可以应用于大多数CNN架构。
我们在两个最具代表性的计算机视觉任务下解释了这种新的设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5

11-13 06:36