本文介绍了连续行之间的日期差-Pyspark数据框的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个具有以下结构的表

I have a table with following structure

USER_ID     Tweet_ID                 Date
  1           1001       Thu Aug 05 19:11:39 +0000 2010
  1           6022       Mon Aug 09 17:51:19 +0000 2010
  1           1041       Sun Aug 19 11:10:09 +0000 2010
  2           9483       Mon Jan 11 10:51:23 +0000 2012
  2           4532       Fri May 21 11:11:11 +0000 2012
  3           4374       Sat Jul 10 03:21:23 +0000 2013
  3           4334       Sun Jul 11 04:53:13 +0000 2013

基本上我想做的是有一个 PysparkSQL 查询,该查询计算具有相同user_id号的连续记录的日期差(以秒为单位).预期结果将是:

Basically what I would like to do is have a PysparkSQL query that calculates the date difference (in seconds) for consecutive records with the same user_id number. The expected result would be:

1      Sun Aug 19 11:10:09 +0000 2010 - Mon Aug 09 17:51:19 +0000 2010     839930
1      Mon Aug 09 17:51:19 +0000 2010 - Thu Aug 05 19:11:39 +0000 2010     340780
2      Fri May 21 11:11:11 +0000 2012 - Mon Jan 11 10:51:23 +0000 2012     1813212
3      Sun Jul 11 04:53:13 +0000 2013 - Sat Jul 10 03:21:23 +0000 2013     5510

推荐答案

像这样:

df.registerTempTable("df")

sqlContext.sql("""
     SELECT *, CAST(date AS bigint) - CAST(lag(date, 1) OVER (
              PARTITION BY user_id ORDER BY date) AS bigint) 
     FROM df""")

这篇关于连续行之间的日期差-Pyspark数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-21 14:40