问题描述
我必须做出一个程序,找出从2D点的给定列表中的所有凸四边形。我曾试图与向量跨产品,但它似乎并没有成为一个正确的解决办法。
也许有一些有效的算法来这个问题,但我不能找到它。
这是一个例子例输入和输出:
输入
点数: 6
后坐标点(X,Y)的: 0 0 0 1 1 0 1 1 2 0 2 1
输出
凸四边形的数量: 9
一个四边形是凸的,如果它的对角线相交。相反地,如果两条线段相交,则他们的四个端点作出的凸四边形。
每对点方式可以提供一个线段,和两条线段之间的每个交叉点对应的凸四边形。
您可以找到交集的点使用无论是天真的算法比较所有对段,或宾利奥特曼算法。前者需要O( N 的);而后者为O((的 N 的 + 问:的)记录的 N 的)(其中的问:是凸四边形的数量)。在最坏的情况下的问:的=Θ( N 的) - 考虑的在正圆n 的点 - 所以Bentley-奥特曼并不总是快
这里的幼稚版本的Python:
进口numpy的为NP从itertools进口组合高清相交点(S1,S2): 返回交集的线段点`s1`和`s2`,或 没有,如果他们不相交。 P,R = S1 [0],S1 [1] - S1 [0] Q,S = s2的[0],S2 [1] - S2 [0] RXS =浮动(np.cross(R,S)) 如果RXS == 0:返回None T = np.cross(Q - P,S)/ RXS U = np.cross(Q - P,R)/ RXS 如果0℃ T< 1和0℃下U< 1: 返回P + T *ṛ 返回None高清convex_quadrilaterals(点): 生成之中`points`凸四边形。 段=组合(分2) 对于S1,S2在组合(段2): 如果交叉点(S1,S2)=无!: 收率S1,S2
和一个例子运行:
>>>点=地图(np.array,[(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)])>>> LEN(名单(convex_quadrilaterals(点)))9
I have to make a program to find all convex quadrilaterals from the given list of 2d points.I have tried it with vector cross product but it doesn't seem to be a correct solution.
Maybe there is some effective algorithm to this problem but I can not find it.
This is an example case with inputs and outputs:
Input
Number of Points: 6
coordinates of points (x,y): 0 0 0 1 1 0 1 1 2 0 2 1
Output
Number of convex quadrilaterals: 9
A quadrilateral is convex if its diagonals intersect. Conversely, if two line segments intersect, then their four endpoints make a convex quadrilateral.
Every pair of points gives you a line segment, and every point of intersection between two line segments corresponds to a convex quadrilateral.
You can find the points of intersection using either the naïve algorithm that compares all pairs of segments, or the Bentley–Ottmann algorithm. The former takes O(n); and the latter O((n + q) log n) (where q is the number of convex quadrilaterals). In the worst case q = Θ(n) — consider n points on a circle — so Bentley–Ottmann is not always faster.
Here's the naïve version in Python:
import numpy as np
from itertools import combinations
def intersection(s1, s2):
"""
Return the intersection point of line segments `s1` and `s2`, or
None if they do not intersect.
"""
p, r = s1[0], s1[1] - s1[0]
q, s = s2[0], s2[1] - s2[0]
rxs = float(np.cross(r, s))
if rxs == 0: return None
t = np.cross(q - p, s) / rxs
u = np.cross(q - p, r) / rxs
if 0 < t < 1 and 0 < u < 1:
return p + t * r
return None
def convex_quadrilaterals(points):
"""
Generate the convex quadrilaterals among `points`.
"""
segments = combinations(points, 2)
for s1, s2 in combinations(segments, 2):
if intersection(s1, s2) != None:
yield s1, s2
And an example run:
>>> points = map(np.array, [(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)])
>>> len(list(convex_quadrilaterals(points)))
9
这篇关于算法找出从2D点的给定列表中的所有凸四边形的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!