题目描述
给出一个简单多边形(没有缺口),它的边要么是垂直的,要么是水平的。要求计算多边形的面积。
多边形被放置在一个 X-YX−Y 的卡笛尔平面上,它所有的边都平行于两条坐标轴之一。然后按逆时针方向给出各顶点的坐标值。所有的坐标值都是整数(因此多边形的面积也为整数)。
输入输出格式
输入格式:
第一行给出多边形的顶点数 n(n≤100)n(n≤100) 。接下来的几行每行给出多边形一个顶点的坐标值 XX 和 YY (都为整数并且用空格隔开)。顶点按逆时针方向逐个给出。并且多边形的每一个顶点的坐标值 -200≤x,y≤200−200≤x,y≤200 。多边形最后是靠从最后一个顶点到第一个顶点画一条边来封闭的。
输出格式:
一个整数,表示多边形的面积。
输入输出样例
输入样例#1:
10
0 0
4 0
4 1
3 1
3 3
2 3
2 2
1 2
1 3
0 3
输出样例#1:
9
思路:皮克公式 +搜索。
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 110
using namespace std;
int n,ans,bns;
int map[][];
int dx[]={,,,-};
int dy[]={,-,,};
struct nond{
int x,y;
}point[MAXN];
void dfs(int x,int y){
if(x>||x<||y>||y<||map[x][y]!=) return ;
map[x][y]=;ans++;
dfs(x+,y);dfs(x-,y);
dfs(x,y+);dfs(x,y-);
}
int main(){
scanf("%d",&n);
point[].x=-;point[].y=-;
for(int i=;i<=n+;i++){
if(i<=n){
scanf("%d%d",&point[i].x,&point[i].y);
point[i].x+=;point[i].y+=;bns++;
}
if(i==){
point[n+].x=point[].x;
point[n+].y=point[].y;
}
if(point[i].x==point[i-].x){
int mi=min(point[i].y,point[i-].y);
int ma=max(point[i].y,point[i-].y);
for(int j=mi;j<=ma;j++) map[point[i].x][j]=;
bns+=ma-mi-;
}
else if(point[i].y==point[i-].y){
int mi=min(point[i].x,point[i-].x);
int ma=max(point[i].x,point[i-].x);
for(int j=mi;j<=ma;j++) map[j][point[i].y]=;
bns+=ma-mi-;
}
}
dfs(point[].x+,point[].y+);
cout<<ans+bns/-;
}