本文介绍了用tromino覆盖棋盘使用分而治之的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

一个tromino(更确切地说,一个右tromino)是由三个1×1正方形组成的L形

平铺。问题是要覆盖任何2 * n * 2 ^ n

的棋盘,其中缺少带有tromino的正方形。 Trominoes可以以任意方式定向,但是它们应该覆盖所有方块,除了

完全没有重叠并且没有重叠。

我想为这个问题设计一个分而治之的算法。任何人都可以帮助我吗?

A tromino (more accurately, a right tromino) is an L-shaped
tile formed by three 1×1 squares. The problem is to cover any 2^n * 2^n
chessboard with a missing square with trominoes. Trominoes can be oriented in an
arbitrary way, but they should cover all the squares of the board except the
missing one exactly and with no overlaps .
I want to Design a divide-and-conquer algorithm for this problem. Can anyone help me?

推荐答案


这篇关于用tromino覆盖棋盘使用分而治之的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-19 09:06