2751: [HAOI2012]容易题(easy)
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1087 Solved: 477
[Submit][Status][Discuss]
Description
为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!
Input
第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。
Output
一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。
Sample Input
3 4 5
1 1
1 1
2 2
2 3
4 3
1 1
1 1
2 2
2 3
4 3
Sample Output
90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
HINT
数据范围
30%的数据n<=4,m<=10,k<=10
另有20%的数据k=0
70%的数据n<=1000,m<=1000,k<=1000
100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m
Source
(Tip:唉。。。为了倒霉的期中考试,好久没编程了,果然逗比频频)
题解:题目说是简单题,实际上这真的不是神犇卖萌,真的比较水(HansBug:As For 省选题),但是我WAWAWA狂WA不止,结果发现居然是卡数据类型了TT,表示一万个逗比= =。。。实际上题目的思路很明显,就是将各个位置上面被Ban掉的数减掉,然后求积就好啦(HansBug:注意要快速幂,更重要的是记得判重——样例便有所体现,我打赌要是样例没有的话得卡掉一堆人)
/**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ const p=;
var
i,j,k,l,m,n:longint;
a1,a2,a3,a4,tt:int64;
a:array[..,..] of int64;
procedure sort(l,r:longint);
var i,j:longint;x,y,z:int64;
begin
i:=l;j:=r;x:=a[(l+r) div ,];y:=a[(l+r) div ,];
repeat
while (a[i,]<x) or ((a[i,]=x) and (a[i,]<y)) do inc(i);
while (a[j,]>x) or ((a[j,]=x) and (a[j,]>y)) do dec(j);
if i<=j then
begin
z:=a[j,];a[j,]:=a[i,];a[i,]:=z;
z:=a[j,];a[j,]:=a[i,];a[i,]:=z;
inc(i);dec(j);
end;
until i>j;
if i<r then sort(i,r);
if l<j then sort(l,j);
end;
function trans(x:int64):int64;
begin
if x< then x:=(x+(abs(x) div p+)*p) mod p else x:=x mod p;
end;
function ksm(x,y:int64):int64;
begin
ksm:=;
while y> do
begin
if odd(y) then ksm:=(ksm*x) mod p;
x:=(x*x) mod p;
y:=y div ;
end;
end;
begin
readln(n,m,l);
if odd(n) then
tt:=((int64(n+) div ) *int64(n)) mod p //注意:就是这和下下行卡了我好久,记得强制转类型
else
tt:=((int64(n) div )*int64(n+)) mod p;
for i:= to l do readln(a[i,],a[i,]);
sort(,l);a[,]:=;a[,]:=;a1:=;a2:=a[,];k:=;
for i:= to l+ do
begin
if (a[i,]=a[i-,]) and (a[i,]=a[i-,]) then continue;
if a[i,]<>a[i-,] then
begin
a1:=(a1*trans(tt-a2)) mod p;
a2:=;inc(k);
end;
a2:=(a2+a[i,]) mod p;
end;
a1:=(a1*ksm(tt,m-k)) mod p;
writeln(a1);
readln;
end.