本文介绍了如何在Julia中向我的数据框插入缺失值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
df3[10, :A] = missing
df3[15, :B] = missing
df3[15, :C] = missing
即使是NA也无法正常工作.
Even NA is not working.
我遇到错误
推荐答案
使用allowmissing!
函数.
julia> using DataFrames
julia> df = DataFrame(a=[1,2,3])
3×1 DataFrame
│ Row │ a │
│ │ Int64 │
├─────┼───────┤
│ 1 │ 1 │
│ 2 │ 2 │
│ 3 │ 3 │
julia> df.a[1] = missing
ERROR: MethodError: Cannot `convert` an object of type Missing to an object of type Int64
julia> allowmissing!(df)
3×1 DataFrame
│ Row │ a │
│ │ Int64⍰ │
├─────┼────────┤
│ 1 │ 1 │
│ 2 │ 2 │
│ 3 │ 3 │
julia> df.a[1] = missing
missing
julia> df
3×1 DataFrame
│ Row │ a │
│ │ Int64⍰ │
├─────┼─────────┤
│ 1 │ missing │
│ 2 │ 2 │
│ 3 │ 3 │
您可以看到DataFrame
中的哪些列允许missing
,因为它们在列名下的类型名称后以⍰
突出显示.
You can see which columns in a DataFrame
allow missing
because they are highlighted with ⍰
after type name under column name.
您还可以使用allowmissing
函数来创建新的DataFrame
.
You can also use allowmissing
function to create a new DataFrame
.
两个函数都可以选择接受要转换的列.
Both functions optionally accept columns that are to be converted.
最后有一对disallowmissing
/disallowmissing!
进行相反的处理(即,如果向量实际上不包含缺失值,则从eltype
剥离可选的Missing
并集).
Finally there is a disallowmissing
/disallowmissing!
pair that does the reverse (i.e. strips optional Missing
union from eltype
if a vector actually contains no missing values).
这篇关于如何在Julia中向我的数据框插入缺失值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!