单个物理维度可以被事实表多次引用,每个引用连接逻辑上存在差异的角色维度。例如,事实表可以有多个日期,每个日期通过外键引用不同的日期维度,原则上每个外键表示不同的日期维度视图,这样引用具有不同的含义。这些不同的维度视图具有唯一的代理键列名,被称为角色,相关维度被称为角色扮演维度。
当一个事实表多次引用一个维度表时会用到角色扮演维度。例如,一个销售订单有一个是订单日期,还有一个请求交付日期,这时就需要引用日期维度表两次。
我们期望在每个事实表中设置日期维度,因为总是希望按照时间来分析业务情况。在事务型事实表中,主要的日期列是事务日期,例如,订单日期。有时会发现其它日期也可能与每个事实关联,例如,订单事务的请求交付日期。每个日期应该成为事实表的外键。
本篇说明两类角色扮演维度的实现,分别是表别名和数据库视图。表别名是在SQL语句里引用维度表多次,每次引用都赋予维度表一个别名。而数据库视图,则是按照事实表需要引用维度表的次数,建立相同数量的视图。我先修改销售订单数据库模式,添加一个请求交付日期字段,并对数据抽取和装载脚本做相应的修改。这些表结构修改好后,插入测试数据,演示别名和视图在角色扮演维度中的用法。
一、修改数据库模式
1. 修改源库表结构
执行下面的脚本,给源库中销售订单表sales_order增加request_delivery_date字段。
use source; alter table sales_order add request_delivery_date datetime after order_date ;
2. 修改数据仓库表结构
-- 修改外部表 drop external table ext.sales_order; create external table ext.sales_order ( order_number int, customer_number int, product_code int, order_date timestamp, request_delivery_date timestamp, entry_date timestamp, order_amount decimal(10 , 2 ), order_quantity int ) location ('pxf://mycluster/data/ext/sales_order?profile=hdfstextsimple') format 'text' (delimiter=e',', null='null'); comment on table ext.sales_order is '销售订单外部表'; comment on column ext.sales_order.order_number is '订单号'; comment on column ext.sales_order.customer_number is '客户编号'; comment on column ext.sales_order.product_code is '产品编码'; comment on column ext.sales_order.order_date is '订单日期'; comment on column ext.sales_order.request_delivery_date is '请求交付日期'; comment on column ext.sales_order.entry_date is '登记日期'; comment on column ext.sales_order.order_amount is '销售金额'; comment on column ext.sales_order.order_quantity is '销售数量'; -- 修改rds.sales_order alter table rds.sales_order add column request_delivery_date timestamp default null; comment on column rds.sales_order.request_delivery_date is '请求交付日期'; -- 修改tds.sales_order_fact alter table tds.sales_order_fact add column request_delivery_date_sk bigint default null; comment on column tds.sales_order_fact.request_delivery_date_sk is '请求交付日期维度代理键'; comment on column tds.sales_order_fact.order_date_sk is '订单日期维度代理键';
增加列的过程已经在“HAWQ数据仓库实践(六)——增加列”(http://blog.csdn.net/wzy0623/article/details/72651785)详细讨论过。HAWQ不支持给外部表增加列,因此需要重建表。在销售订单外部表上增加请求交付日期字段,数据类型是timestamp,对应源库表上的datetime类型。注意外部表中列的顺序要和源表中列定义的顺序保持一致。
RDS和TDS中的内部表直接使用ALTER TABLE语句增加请求交付日期列。因为HAWQ的ADD COLUMN不支持after语法,新增的字段会加到所有已存在字段的后面。修改后数据仓库模式如图1所示。
从图中可以看到,销售订单事实表和日期维度表之间有两条连线,表示订单日期和请求交付日期都是引用日期维度表的外键。注意,虽然图中显示了表之间的关联关系,但HAWQ中并不支持主外键数据库约束。
二、修改定期数据装载函数
create or replace function fn_regular_load () returns void as $$ declare -- 设置scd的生效时间 v_cur_date date := current_date; v_pre_date date := current_date - 1; v_last_load date; begin -- 分析外部表 analyze ext.customer; analyze ext.product; analyze ext.sales_order; -- 将外部表数据装载到原始数据表 truncate table rds.customer; truncate table rds.product; insert into rds.customer select * from ext.customer; insert into rds.product select * from ext.product; insert into rds.sales_order select order_number, customer_number, product_code, order_date, entry_date, order_amount, order_quantity, request_delivery_date from ext.sales_order; -- 分析rds模式的表 analyze rds.customer; analyze rds.product; analyze rds.sales_order; -- 设置cdc的上限时间 select last_load into v_last_load from rds.cdc_time; truncate table rds.cdc_time; insert into rds.cdc_time select v_last_load, v_cur_date; -- 装载客户维度 insert into tds.customer_dim (customer_number, customer_name, customer_street_address, customer_zip_code, customer_city, customer_state, shipping_address, shipping_zip_code, shipping_city, shipping_state, isdelete, version, effective_date) select case flag when 'D' then a_customer_number else b_customer_number end customer_number, case flag when 'D' then a_customer_name else b_customer_name end customer_name, case flag when 'D' then a_customer_street_address else b_customer_street_address end customer_street_address, case flag when 'D' then a_customer_zip_code else b_customer_zip_code end customer_zip_code, case flag when 'D' then a_customer_city else b_customer_city end customer_city, case flag when 'D' then a_customer_state else b_customer_state end customer_state, case flag when 'D' then a_shipping_address else b_shipping_address end shipping_address, case flag when 'D' then a_shipping_zip_code else b_shipping_zip_code end shipping_zip_code, case flag when 'D' then a_shipping_city else b_shipping_city end shipping_city, case flag when 'D' then a_shipping_state else b_shipping_state end shipping_state, case flag when 'D' then true else false end isdelete, case flag when 'D' then a_version when 'I' then 1 else a_version + 1 end v, v_pre_date from (select a.customer_number a_customer_number, a.customer_name a_customer_name, a.customer_street_address a_customer_street_address, a.customer_zip_code a_customer_zip_code, a.customer_city a_customer_city, a.customer_state a_customer_state, a.shipping_address a_shipping_address, a.shipping_zip_code a_shipping_zip_code, a.shipping_city a_shipping_city, a.shipping_state a_shipping_state, a.version a_version, b.customer_number b_customer_number, b.customer_name b_customer_name, b.customer_street_address b_customer_street_address, b.customer_zip_code b_customer_zip_code, b.customer_city b_customer_city, b.customer_state b_customer_state, b.shipping_address b_shipping_address, b.shipping_zip_code b_shipping_zip_code, b.shipping_city b_shipping_city, b.shipping_state b_shipping_state, case when a.customer_number is null then 'I' when b.customer_number is null then 'D' else 'U' end flag from v_customer_dim_latest a full join rds.customer b on a.customer_number = b.customer_number where a.customer_number is null -- 新增 or b.customer_number is null -- 删除 or (a.customer_number = b.customer_number and not (coalesce(a.customer_name,'') = coalesce(b.customer_name,'') and coalesce(a.customer_street_address,'') = coalesce(b.customer_street_address,'') and coalesce(a.customer_zip_code,0) = coalesce(b.customer_zip_code,0) and coalesce(a.customer_city,'') = coalesce(b.customer_city,'') and coalesce(a.customer_state,'') = coalesce(b.customer_state,'') and coalesce(a.shipping_address,'') = coalesce(b.shipping_address,'') and coalesce(a.shipping_zip_code,0) = coalesce(b.shipping_zip_code,0) and coalesce(a.shipping_city,'') = coalesce(b.shipping_city,'') and coalesce(a.shipping_state,'') = coalesce(b.shipping_state,'') ))) t order by coalesce(a_customer_number, 999999999999), b_customer_number limit 999999999999; -- 重载PA客户维度 truncate table pa_customer_dim; insert into pa_customer_dim select customer_sk, customer_number, customer_name, customer_street_address, customer_zip_code, customer_city, customer_state, isdelete, version, effective_date, shipping_address, shipping_zip_code, shipping_city, shipping_state from customer_dim where customer_state = 'pa'; -- 装载产品维度 insert into tds.product_dim (product_code, product_name, product_category, isdelete, version, effective_date) select case flag when 'D' then a_product_code else b_product_code end product_code, case flag when 'D' then a_product_name else b_product_name end product_name, case flag when 'D' then a_product_category else b_product_category end product_category, case flag when 'D' then true else false end isdelete, case flag when 'D' then a_version when 'I' then 1 else a_version + 1 end v, v_pre_date from (select a.product_code a_product_code, a.product_name a_product_name, a.product_category a_product_category, a.version a_version, b.product_code b_product_code, b.product_name b_product_name, b.product_category b_product_category, case when a.product_code is null then 'I' when b.product_code is null then 'D' else 'U' end flag from v_product_dim_latest a full join rds.product b on a.product_code = b.product_code where a.product_code is null -- 新增 or b.product_code is null -- 删除 or (a.product_code = b.product_code and not (a.product_name = b.product_name and a.product_category = b.product_category))) t order by coalesce(a_product_code, 999999999999), b_product_code limit 999999999999; -- 装载order维度 insert into order_dim (order_number, version, effective_date) select t.order_number, t.v, t.effective_date from (select order_number, 1 v, order_date effective_date from rds.sales_order, rds.cdc_time where entry_date >= last_load and entry_date < current_load) t; -- 装载销售订单事实表 insert into sales_order_fact select order_sk, customer_sk, product_sk, e.date_sk, e.year * 100 + e.month, order_amount, order_quantity, f.date_sk from rds.sales_order a, order_dim b, v_customer_dim_his c, v_product_dim_his d, date_dim e, date_dim f, rds.cdc_time g where a.order_number = b.order_number and a.customer_number = c.customer_number and a.order_date >= c.effective_date and a.order_date < c.expiry_date and a.product_code = d.product_code and a.order_date >= d.effective_date and a.order_date < d.expiry_date and date(a.order_date) = e.date and date(a.request_delivery_date) = f.date and a.entry_date >= g.last_load and a.entry_date < g.current_load; -- 分析tds模式的表 analyze customer_dim; analyze product_dim; analyze order_dim; analyze sales_order_fact; -- 更新时间戳表的last_load字段 truncate table rds.cdc_time; insert into rds.cdc_time select v_cur_date, v_cur_date; end; $$ language plpgsql;
函数做了以下两点修改:
- 在装载rds.sales_order时显式指定了列的顺序,因为外部表与内部表列的顺序不一致。
- 在装载销售订单事实表时,关联了日期维度表两次,分别赋予别名e和f。事实表和两个日期维度表关联,取得日期代理键。e.date_sk表示订单日期代理键,f.date_sk表示请求交付日期的代理键。
三、测试
1. 在源库中生成测试数据
执行下面的SQL脚本在源库中增加三个带有交货日期的销售订单。
use source; /*** 新增订单日期为昨天的3条订单。***/ set @start_date := unix_timestamp(date_add(current_date, interval -1 day)); set @end_date := unix_timestamp(current_date); drop table if exists temp_sales_order_data; create table temp_sales_order_data as select * from sales_order where 1=0; set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400); set @amount := floor(1000 + rand() * 9000); set @quantity := floor(10 + rand() * 90); insert into temp_sales_order_data values (126, 1, 1, @order_date, @request_delivery_date, @order_date, @amount, @quantity); set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400); set @amount := floor(1000 + rand() * 9000); set @quantity := floor(10 + rand() * 90); insert into temp_sales_order_data values (127, 2, 2, @order_date, @request_delivery_date, @order_date, @amount, @quantity); set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400); set @amount := floor(1000 + rand() * 9000); set @quantity := floor(10 + rand() * 90); insert into temp_sales_order_data values (128, 3, 3, @order_date, @request_delivery_date, @order_date, @amount, @quantity); insert into sales_order select null,customer_number,product_code,order_date, request_delivery_date,entry_date,order_amount,order_quantity from temp_sales_order_data order by order_date; commit ;
2. 执行定期装载函数并查看结果
~/regular_etl.sh
使用下面的查询验证结果。
select a.order_sk, request_delivery_date_sk, c.date from sales_order_fact a, date_dim b, date_dim c where a.order_date_sk = b.date_sk and a.request_delivery_date_sk = c.date_sk ;
查询结果如图2所示。
可以看到只有三个新的销售订单具有request_delivery_date_sk值,6360对应的日期是2017年5月30日。
四、使用角色扮演维度查询
1. 使用表别名查询
select order_date_dim.date order_date, request_delivery_date_dim.date request_delivery_date, sum(order_amount),count(*) from sales_order_fact a, date_dim order_date_dim, date_dim request_delivery_date_dim where a.order_date_sk = order_date_dim.date_sk and a.request_delivery_date_sk = request_delivery_date_dim.date_sk group by order_date_dim.date , request_delivery_date_dim.date order by order_date_dim.date , request_delivery_date_dim.date;
2. 使用视图查询
-- 创建订单日期视图 create view v_order_date_dim (order_date_sk, order_date, month, month_name, quarter, year) as select * from date_dim; -- 创建请求交付日期视图 create view v_request_delivery_date_dim (request_delivery_date_sk, request_delivery_date, month, month_name, quarter, year) as select * from date_dim; -- 查询 select order_date,request_delivery_date,sum(order_amount),count(*) from sales_order_fact a,v_order_date_dim b,v_request_delivery_date_dim c where a.order_date_sk = b.order_date_sk and a.request_delivery_date_sk = c.request_delivery_date_sk group by order_date , request_delivery_date order by order_date , request_delivery_date;
上面两种实现方式是等价的。结果如图3所示。
图3
尽管不能连接到单一的日期维度表,但可以建立并管理单独的物理日期维度表,然后使用视图或别名建立两个不同日期维度的描述。注意在每个视图或别名列中需要唯一的标识。例如,订单日期属性应该具有唯一标识order_date以便与请求交付日期request_delivery_date区别。别名与视图在查询中的作用并没有本质的区别,都是为了从逻辑上区分同一个物理维度表。许多BI工具也支持在语义层使用别名。但是,如果有多个BI工具,连同直接基于SQL的访问,都同时在组织中使用的话,不建议采用语义层别名的方法。当某个维度在单一事实表中同时出现多次时,则会存在维度模型的角色扮演。基本维度可能作为单一物理表存在,但是每种角色应该被当成标识不同的视图展现到BI工具中。
五、一种有问题的设计
为处理多日期问题,一些设计者试图建立单一日期维度表,该表使用一个键表示每个订单日期和请求交付日期的组合,例如:
create table date_dim (date_sk int, order_date date, delivery_date date); create table sales_order_fact (date_sk int, order_amount int);
这种方法存在两个方面的问题。首先,如果需要处理所有日期维度的组合情况,则包含大约每年365行的清楚、简单的日期维度表将会极度膨胀。例如,订单日期和请求交付日期存在如下多对多关系:
订单日期 请求交付日期 2017-05-26 2017-05-29 2017-05-27 2017-05-29 2017-05-28 2017-05-29 2017-05-26 2017-05-30 2017-05-27 2017-05-30 2017-05-28 2017-05-30 2017-05-26 2017-05-31 2017-05-27 2017-05-31 2017-05-28 2017-05-31
如果使用角色扮演维度,日期维度表中只需要2017-05-26到2017-05-31六条记录。而采用单一日期表设计方案,每一个组合都要唯一标识,明显需要九条记录。当两种日期及其组合很多时,这两种方案的日期维度表记录数会相去甚远。
其次,合并的日期维度表不再适合其它经常使用的日、周、月等日期维度。日期维度表每行记录的含义不再指唯一一天,因此无法在同一张表中标识出周、月等一致性维度,进而无法简单地处理按时间维度的上卷、聚合等需求。