原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html

题解

设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下。($\frac ni$ 表示期望每 $\frac ni$ 步喂这 i 只鸽子一次)

$$ans = \sum_{i=1}^n (-1)^{i+1}\binom ni \frac ni \cdot f(i)$$

考虑如何求 f(i) 。假设我们喂饱的是第一只鸽子,那么假设我们喂了其他鸽子 j 次,那么就可以得到以下式子:

$$f(i) = \sum_{j=0}^{\infty} (j+k) \binom {j+k-1}{k-1} \cdot \left ( g^{i-1} \right ) ^{(j)} (0)\cdot \frac 1{i^{j+k}}$$

(注: $h^{(a)}(x)$ 表示函数 $h(x)$ 的 a 阶导数,$h^{(a)}(0)$ 表示指数生成函数 $h$ 的第 a 项系数)

其中 $\left(g^{i-1}\right)^{(j)}(0)$ 表示给 i-1 只鸽子喂食,每只喂的次数不超过 k-1 次,总共喂了 j 次的方案数。由于还有一只要强制喂到 k 次,所以要乘上 $\binom{j+k-1}{k-1}$ ,这种情况下喂了 $j+k$ 次鸽子,所以要乘上 $j+k$。

那么这个 g(x) 是什么东西?

对于一只鸽子,可以喂 $0,1,2,\cdots, k-1$ 次,搞一个指数生成函数就好了。

$$ g(x) = \sum_{i=0}^{k-1} \frac{ x^i} {i!}$$

时间复杂度 $O(n^2k \log (nk))$ 。

好像还有一个 $O(n^2k)$ 的神仙做法,先坑着。

代码

#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=55,K=1005,S=1<<16,mod=998244353;
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int del(int x,int y){
return x-y<0?x-y+mod:x-y;
}
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
int Fac[S],Inv[S];
void prework(){
int n=S-1;
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=(LL)Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
Fod(i,n,1)
Inv[i-1]=(LL)Inv[i]*i%mod;
}
int C(int n,int m){
if (m<0||m>n)
return 0;
return (LL)Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int n,k;
int m,d,invm;
int f[N];
int R[S],w[S];
int a[S],b[S],c[S];
void FFT(int *a,int n){
For(i,0,m-1)
if (i<R[i])
swap(a[i],a[R[i]]);
for (int t=n>>1,d=1;d<n;d<<=1,t>>=1)
for (int i=0;i<n;i+=d<<1)
for (int j=0;j<d;j++){
int tmp=(LL)w[t*j]*a[i+j+d]%mod;
a[i+j+d]=del(a[i+j],tmp);
Add(a[i+j],tmp);
}
}
int main(){
prework();
n=read(),k=read();
for (m=1,d=0;m<n*k;m<<=1,d++);
invm=Pow(m,mod-2);
For(i,0,m-1)
R[i]=(R[i>>1]>>1)|((i&1)<<(d-1));
w[0]=1,w[1]=Pow(3,(mod-1)/m);
For(i,2,m-1)
w[i]=(LL)w[i-1]*w[1]%mod;
clr(a);
For(i,0,k-1)
a[i]=Inv[i];
FFT(a,m);
For(i,0,m-1)
b[i]=1;
For(x,1,n){
For(i,0,m-1)
c[i]=b[i];
reverse(w+1,w+m);
FFT(c,m);
reverse(w+1,w+m);
For(i,0,m-1)
c[i]=(LL)c[i]*invm%mod*Fac[i]%mod;
f[x]=0;
For(i,0,m-1)
if (c[i])
Add(f[x],(LL)C(i+k-1,k-1)*c[i]%mod*(i+k)%mod*Pow(x,mod-i-k)%mod);
For(i,0,m-1)
b[i]=(LL)b[i]*a[i]%mod;
}
int ans=0;
For(i,1,n){
int tmp=(LL)C(n,i)*n%mod*Pow(i,mod-2)%mod*f[i]%mod;
if (i&1)
Add(ans,tmp);
else
Del(ans,tmp);
}
cout<<ans<<endl;
return 0;
}

  

04-19 15:34