问题描述
假设被整形为一个二维阵列,每行是一个观测组观察的n维阵列。使用这种方法整形, np.polyfit
可以计算出整个ndarray 2次拟合系数(矢量):
Assume an n-dimensional array of observations that are reshaped to be a 2d-array with each row being one observation set. Using this reshape approach, np.polyfit
can compute 2nd order fit coefficients for the entire ndarray (vectorized):
fit = np.polynomial.polynomialpolyfit(X, Y, 2)
,其中Y是形状(304000,21)和X是一个载体。这导致系数的(304000,3)阵列,适合。
where Y is shape (304000, 21) and X is a vector. This results in a (304000,3) array of coefficients, fit.
使用迭代器就可以调用 np.polyval(FIT,X)
的每一行。这是低效,当向量化的方法可能存在。可以在配合
结果被应用到不反复整个观察阵列?如果是这样,怎么样?
Using an iterator it is possible to call np.polyval(fit, X)
for each row. This is inefficient when a vectorized approach may exist. Could the fit
result be applied to the entire observation array without iterating? If so, how?
这是一起的this SO 问题。
推荐答案
np.polynomial.polynomial.polyval
需要多维数组系数:
>>> x = np.random.rand(100)
>>> y = np.random.rand(100, 25)
>>> fit = np.polynomial.polynomial.polyfit(x, y, 2)
>>> fit.shape # 25 columns of 3 polynomial coefficients
(3L, 25L)
>>> xx = np.random.rand(50)
>>> interpol = np.polynomial.polynomial.polyval(xx, fit)
>>> interpol.shape # 25 rows, each with 50 evaluations of the polynomial
(25L, 50L)
当然,
>>> np.all([np.allclose(np.polynomial.polynomial.polyval(xx, fit[:, j]),
... interpol[j]) for j in range(25)])
True
这篇关于numpy的PolyFit和PolyVal的多维?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!