对列进行排序并找到标准偏差

对列进行排序并找到标准偏差

本文介绍了对列进行排序并找到标准偏差的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

语言:C#Windows窗体/控制台

DataTable如下所示



1.按升序排列列。(从最小到最大。)



2.排序后找到x1和x2索引号 -

a。 x1 = 0.90 * N

b。 x2 = 0.10 * N

N = + table3.Rows.Count



如果获得的索引不是整数,请将其四舍五入到最近的整数





3.x90&x10((百分位数)是找到的指数值)

计算从最小值到最大值的值,直到达到指示的数字(索引)





4.标准偏差每个标题=(x90-x10)/2.56





_____________________________________________________________________________

DAC_RSET1 [1] | ACI1_P [1] | IIX1_SCL [1] | IIX2_SDA [1] | ICX2_SCL [1] |

______________ | _______________ | _______________ | _______________ | ______________ |

-0.563910007 -0.608277023 -0.421943992 -0.42030701 -0.421433985

- 0.566235006 -0.612775028 -0.421245992 -0.420073986 -0.421357006

-0.568172991 -0.610139012 -0.422098994 -0.421003997 -0.422753006

-0.565537989 -0.610370994 -0.421478987 -0.42030701 -0.421822011

-0.560965002 -0.607268989 -0.423184007 -0.420926988 -0.422675014

-0.564297974 -0.61075902 -0.422021002 -0.420538992 -0.421745002

-0.557788014 -0.601453006 -0.418765008 -0.416974008 -0.418334007

-0.563600004 -0.606105983 -0.420704007 -0.418446988 -0.420969009

-0.568947971 -0.612309992 -0.423649013 -0.421236992 -0.422984987

-0.559724987 -0.602616012 -0.421245992 - 0.419532001 -0.420969009

-0.565847993 -0.608897984 -0.420626014 -0.419299006 -0.421047002

-0.559724987 -0.615333974 -0.424578995 -0.423173994 -0.424612999

-0.563678026 -0.60928601 -0.420549005 -0.418911994 -0.420116991

-0.568870008 -0.61075902 -0.422021002 -0.421314001 -0.422210008

-0.566622972 -0.60928601 -0.420704007 -0.419299006 -0.420581996

-0.562902987 -0.607811987 -0.421555996 -0.419299006 -0.421357006

-0.567319989 -0.612465024 -0.421555996 -0.419997007 -0.421745002

-0.568714976 -0.613861024 -0.422641009 -0.421391994 -0.423218012

-0.566932976 -0.611379027 -0.422176003 -0.419764012 -0.421512008

-0.565537989 -0.611766994 -0.421943992 -0.419919014 -0.421433985

-0.567475021 -0.607734978 -0.42109099 -0.419454008 -0.421047002

-0.567009985 -0.607811987 -0.421324015 -0.419454008 -0.420814008

-0.563058019 -0.607811987 -0.422486007 -0.419764012 -0.421900004

-0.561043024 -0.603469014 -0.420626014 -0.419842005 -0.420736998

-0.562979996 -0.607268989 -0.420161009 -0.41860199 -0.419263989

-0.563368022 -0.608743012 -0.420394003 -0.41960901 -0.421512008

-0.56476301 -0.609363019 -0.420549005 -0.418834001 -0.419883996

-0.556469977 -0.605098009 -0.420935988 -0.419221997 -0.421124011

-0.567475021 -0.611766994 -0.422253996 -0.419997007 -0.421202004

-0.564917982 -0.609207988 -0.422253996 -0.420693994 -0.422055006

-0.562359989 -0.607967019 -0.420394003 -0.41860199 -0.420659006

-0.560965002 -0.607580006 -0.421555996 -0.419376999 -0.421357006

-0.567319989 -0.609596014 -0.421324015 -0.419532001 -0.420969009

-0.564143002 -0.608277023 -0.420161009 -0.41860199 -0.420194

-0.561895013 -0.608664989 -0.420316011 -0.418989003 -0.420736998

-0.561585009 -0.604089975 -0.419696003 -0.418523997 -0.419883996

-0.563135028 -0.608121991 -0.421633989 -0.419919014 -0.421433985

-0.564840019 -0.607734978 -0.420549005 -0.418989003 -0.420581996

-0.56220501 7 -0.606028974 -0.421245992 -0.419532001 -0.420814008

-0.566932976 -0.611379027 -0.422486007 -0.421003997 -0.422210008

-0.560500026 -0.606958985 -0.421710998 -0.419919014 -0.421512008

-0.566235006 -0.60928601 -0.421633989 -0.419764012 -0.421745002

-0.566855013 -0.611612022 -0.420617014 -0.421866

-0.566699982 -0.608510017 -0.421169013 -0.419299006 -0.420736998

-0.56329 -0.609673023 -0.422408998 -0.420848995 -0.422443002

-0.566855013 -0.609673023 -0.421710998 -0.420152009 -0.422210008

-0.563444972 -0.608277023 -0.421633989 - 0.420617014 -0.42166701

-0.566699982 -0.609673023 -0.420780987 -0.418834001 -0.420581996

-0.563678026 -0.609053016 -0.421169013 -0.419066995 -0.420892

-0.560654998 - 0.606571019 -0.420084 -0.418446988 -0.419883996

-0.564297974 -0.609363019 -0.422098994 -0.419919014 -0.421745002

-0.562128007 -0.606881022 -0.422021002 -0.420538992 -0.421900004

-0.563058019 -0.609207988 -0.420704007 -0.419299006 -0.420194

-0.564530015 -0.608433008 -0.420780987 -0.419144005 -0.420504004

-0.561043024 -0.603779018 -0.422176003 -0.42030701 -0.421588987

-0.562902987 -0.609130979 -0.420316011 -0.418368995 -0.420194

-0.56476301 -0.609517992 -0.420082986 -0.417593986 -0.420581996

-0.564607978 -0.609207988 -0.417757988 -0.416198999 -0.418101013

-0.569644988 -0.614248991 -0.421866 -0.42038399 -0.421822011

-0.568095028 -0.611998975 -0.421943992 -0.419997007 -0.422520012
-0.564530015 -0.610682011 -0.419687003 -0.421866

-0.561353028 -0.605175018 -0.421633989 -0.41960901 -0.42166701

-0.559493005 -0.605485976 -0.421014011 -0.419532001 -0.420736998

-0.562825024 -0.607424021 -0.421014011 -0.418989003 -0.420892

-0.563058019 -0.608277023 -0.421633989 -0.420152009 -0.421202004

-0.567009985 -0.611379027 -0.421710998 -0.419997007 -0.421900004

-0.56251502 -0.606725991 -0.421014011 -0.419299006 -0.421202004

-0.566157997 -0.611069024 -0.42109099 -0.419687003 -0.420969009

-0.562825024 -0.607657015 -0.420859009 -0.419532001 -0.421124011

-0.564297974 -0.610216022 -0.421710998 -0.419376999 -0.420814008

-0.559803009 -0.602383971 -0.420859009 -0.419532001 -0.421124011

-0.561972976 -0.607578993 -0.422408998 -0.42038399 -0.421900004

-0.565304995 -0.611612022 -0.421478987 -0.419687003 -0.421202004

-0.563832998 -0.609363019 -0.420316011 -0.418678999 -0.419961989

-0.569413006 -0.611379027 -0.419773012 -0.418137014 -0.419728994

-0.56329 -0.606494009 -0.421014011 -0.419066995 -0.421124011

-0.563444972 -0.608200014 -0.42178899 -0.420152009 -0.421124011

-0.564530015 -0.606261015 -0.42109099 -0.419532001 -0.421124011

-0.56724298 -0。 61215502 -0.422253996 -0.420073986 -0.422210008

-0.556858003 -0.604089975 -0.421478987 -0.419919014 -0.421357006

-0.566235006 -0.611999989 -0.421633989 -0.42030701 -0.421977013

-0.565383017 -0.610992014 -0.420549005 -0.419221997 -0.420426995

-0.563368022 -0.607347012 -0.421245992 -0.419144005 -0.421357006

-0.562205017 -0.60858798 -0.423184007 -0.42108199 -0.421977013

-0.566699982 -0.608897984 -0.421478987 -0.41960901 -0.421279013

-0.563832998 -0.609906018 -0.422331005 -0.421158999 -0.422675014

-0.560500026 -0.60719198 -0.421866 -0.42030701 - 0.42166701

-0.563522995 -0.607501984 -0.421943992 -0.420152009 -0.421588987

-0.562748015 -0.607734978 -0.421014011 -0.419687003 -0.421202004

-0.567629993 -0.611688972 - 0.422331005 -0.420617014 -0.421512008

-0.567009985 -0.611844003 -0.422719002 -0.421003997 -0.422288001

-0.562049985 -0.607580006 -0.421943992 -0.420848995 -0.422443002

-0.563754976 -0.608277023 -0.421014011 -0.419299006 -0.421433985

-0.56329 -0.60789001 -0.421478987 -0.41960901 -0.421512008

-0.564220011 -0.60858798 -0.420084 -0.418756992 -0.420426995

-0.561353028 -0.608044982 -0.419773012 -0.418368995 -0.420349002

-0.567088008 -0.609750986 -0.42178899 -0.420228988 -0.422288001

-0.566003025 -0.609130979 -0.421324015 -0.419997007 -0.42159

-0.56398797 -0.60789001 -0.419851005 -0.417982012 -0.419883996

-0.562049985 -0.605874002 -0.421633989 -0.419764012 -0.421047002
-0.565614998 -0.611688972 -0.421169013 -0.419919014 -0.421433985

-0.563135028 -0.611612022 -0.421478987 -0.419997007 -0.421202004

-0.565614998 -0.61075902 -0.420859009 -0.419687003 -0.420736998

-0.566778004 -0.611612022 -0.42178899 -0.42030701 -0.421822011

-0.567552984 -0.609363019 -0.420780987 -0.418989003 -0.420349002

-0.565847993 -0.61006099 -0.421555996 -0.420152009 -0.421433985

-0.564994991 -0.608897984 -0.421866 -0.42038399 -0.421822011

-0.562205017 -0.608044982 -0.420316011 -0.418446988 -0.420349002

-0.560887992 -0.607268989 -0.421169013 -0.419299006 -0.421357006

-0.556005001 -0.605175972 -0.421014011 -0.419066995 -0.420814008

-0.561043024 -0.603003979 -0.420704007 -0.419144005 -0.420349002

-0.564607978 -0.610526979 -0.421400994 -0.419532001 -0.420892

-0.56398797 -0.607967019 -0.42109099 -0.419144005 -0.421279013

-0.563058019 -0.609596014 -0.420780987 -0.418756992 -0.420349002

-0.564607978 -0.608121991 -0.420549005 -0.419299006 -0.420659006

-0.56398797 -0.608820021 -0.420704007 -0.419532001 -0.421822011

-0.565073013 -0.60928601 -0.420626014 -0.419144005 -0.420271993

-0.561197996 -0.604012012 -0.419618011 -0.418368995 -0.419961989

-0.558408022 -0.601 531029 -0.419541001 -0.417052001 -0.418567002

-0.563522995 -0.607967019 -0.420859009 -0.419299006 -0.419883996

-0.563135028 -0.607967019 -0.422253996 -0.419687003 -0.421512008

-0.56398797 -0.607580006 -0.421014011 -0.419066995 -0.420892

-0.563600004 -0.607734978 -0.42178899 -0.419842005 -0.420659006

-0.561197996 -0.605408013 -0.421400994 -0.419454008 -0.421279013

-0.563678026 -0.607268989 -0.421245992 -0.419376999 -0.421433985

-0.562902987 -0.608976007 -0.423570991 -0.421624005 -0.422443002

-0.56251502 -0.608200014 -0.421555996 -0.419997007 - 0.421279013

-0.567009985 -0.611302018 -0.421943992 -0.420152009 -0.422520012

-0.562438011 -0.606804013 -0.421400994 -0.419532001 -0.421357006

-0.566157997 -0.611302018 - 0.421633989 -0.419764012 -0.420969009

-0.563600004 -0.605951011 -0.420859009 -0.418678999 -0.420814008

-0.564917982 -0.61006099 -0.422021002 -0.419842005 -0.420892

-0.56406498 -0.610370994 -0.419773012 -0.41782701 -0.419418991

-0.560577989 -0.607037008 -0.422098994 -0.420152009 -0.422132999

-0.563600004 -0.609596014 -0.420394003 -0.418756992 -0.420038998

-0.563212991 -0.609983027 -0.421633989 -0.420228988 -0.421124011

-0.568792999 -0.611069024 -0.419851005 -0.417982012 -0.419108987

-0.562748015 -0.606105983 -0.420859009 -0.418756992 -0.420736998

-0.562979996 -0.608121991 -0.421633989 -0.419997007 -0.421279013

-0.563832998 -0.60571897 -0.420316011 -0.418989003 -0.420736998
-0.567009985 -0.611998975 -0.421943992 -0.420228988 -0.421512008

-0.556159973 -0.603779972 -0.421245992 -0.41960901 -0.420659006

-0.56251502 -0.606958985 -0.420006007 -0.418213993 -0.420038998

-0.565847993 -0.610526979 -0.422331005 -0.420848995 -0.422675014

-0.562902987 -0.611533999 -0.421324015 -0.41960901 -0.4210 47002

-0.559570014 -0.605175018 -0.420394003 -0.419144005 -0.419961989

-0.562669992 -0.607114017 -0.420935988 -0.418834001 -0.420349002

-0.56073302 -0.607347012 - 0.422564 -0.420848995 -0.422443002

-0.56398797 -0.60928601 -0.422098994 -0.420073986 -0.42159

-0.562979996 -0.608510017 -0.421400994 -0.42038399 -0.421357006

- 0.566468 -0.609673023 -0.420549005 -0.41860199 -0.420271993

-0.563754976 -0.608820975 -0.421245992 -0.418523997 -0.420892

-0.560113013 -0.606105983 -0.419773012 -0.418213993 -0.419961989

-0.564220011 -0.610372007 -0.420161009 -0.418291986 -0.419497013

-0.564220011 -0.610680997 -0.422176003 -0.420538992 -0.421977013

-0.563522995 -0.609596014 -0.420239002 -0.418911994 -0.420038998

-0.563368022 -0.609983981 -0.421324015 -0.420073986 -0.421357006

-0.561739981 -0.60432303 -0.422564 -0.420771986 -0.421745002

-0.562748015 -0.6 09053016 -0.420082986 -0.418678999 -0.419806987

-0.565693021 -0.609596014 -0.420780987 -0.41790399 -0.420581996

-0.565537989 -0.609827995 -0.418610007 -0.416896999 -0.418644011

-0.569103003 -0.613783002 -0.421710998 -0.420228988 -0.421822011

-0.568714976 -0.612542987 -0.422641009 -0.420462012 -0.422984987

-0.565304995 -0.610293984 -0.422331005 -0.42030701 -0.42236501

Language: C# Windows Form/Console
DataTable Shown Below

1.Sort the Columns in Ascending Order.(smallest to largest.)

2.After sorting find x1 and x2 index number -
a. x1 = 0.90*N
b. x2 = 0.10*N
N= + table3.Rows.Count

If the index obtained is not a whole number, round it up to the nearest whole number


3.x90 & x10 ((percentile points)are value at index found)
Count the values from the smallest to the largest value until you reach the number indicated (index)


4.Standard deviation = (x90-x10)/2.56 for each Header


_____________________________________________________________________________
DAC_RSET1[1] |ACI1_P[1] |IIX1_SCL[1] |IIX2_SDA[1] |ICX2_SCL[1] |
______________|_______________|_______________|_______________|______________|
-0.563910007-0.608277023-0.421943992-0.42030701-0.421433985
-0.566235006-0.612775028-0.421245992-0.420073986-0.421357006
-0.568172991-0.610139012-0.422098994-0.421003997-0.422753006
-0.565537989-0.610370994-0.421478987-0.42030701-0.421822011
-0.560965002-0.607268989-0.423184007-0.420926988-0.422675014
-0.564297974-0.61075902-0.422021002-0.420538992-0.421745002
-0.557788014-0.601453006-0.418765008-0.416974008-0.418334007
-0.563600004-0.606105983-0.420704007-0.418446988-0.420969009
-0.568947971-0.612309992-0.423649013-0.421236992-0.422984987
-0.559724987-0.602616012-0.421245992-0.419532001-0.420969009
-0.565847993-0.608897984-0.420626014-0.419299006-0.421047002
-0.559724987-0.615333974-0.424578995-0.423173994-0.424612999
-0.563678026-0.60928601-0.420549005-0.418911994-0.420116991
-0.568870008-0.61075902-0.422021002-0.421314001-0.422210008
-0.566622972-0.60928601-0.420704007-0.419299006-0.420581996
-0.562902987-0.607811987-0.421555996-0.419299006-0.421357006
-0.567319989-0.612465024-0.421555996-0.419997007-0.421745002
-0.568714976-0.613861024-0.422641009-0.421391994-0.423218012
-0.566932976-0.611379027-0.422176003-0.419764012-0.421512008
-0.565537989-0.611766994-0.421943992-0.419919014-0.421433985
-0.567475021-0.607734978-0.42109099-0.419454008-0.421047002
-0.567009985-0.607811987-0.421324015-0.419454008-0.420814008
-0.563058019-0.607811987-0.422486007-0.419764012-0.421900004
-0.561043024-0.603469014-0.420626014-0.419842005-0.420736998
-0.562979996-0.607268989-0.420161009-0.41860199-0.419263989
-0.563368022-0.608743012-0.420394003-0.41960901-0.421512008
-0.56476301-0.609363019-0.420549005-0.418834001-0.419883996
-0.556469977-0.605098009-0.420935988-0.419221997-0.421124011
-0.567475021-0.611766994-0.422253996-0.419997007-0.421202004
-0.564917982-0.609207988-0.422253996-0.420693994-0.422055006
-0.562359989-0.607967019-0.420394003-0.41860199-0.420659006
-0.560965002-0.607580006-0.421555996-0.419376999-0.421357006
-0.567319989-0.609596014-0.421324015-0.419532001-0.420969009
-0.564143002-0.608277023-0.420161009-0.41860199-0.420194
-0.561895013-0.608664989-0.420316011-0.418989003-0.420736998
-0.561585009-0.604089975-0.419696003-0.418523997-0.419883996
-0.563135028-0.608121991-0.421633989-0.419919014-0.421433985
-0.564840019-0.607734978-0.420549005-0.418989003-0.420581996
-0.562205017-0.606028974-0.421245992-0.419532001-0.420814008
-0.566932976-0.611379027-0.422486007-0.421003997-0.422210008
-0.560500026-0.606958985-0.421710998-0.419919014-0.421512008
-0.566235006-0.60928601-0.421633989-0.419764012-0.421745002
-0.566855013-0.611612022-0.421866-0.420617014-0.422132999
-0.566699982-0.608510017-0.421169013-0.419299006-0.420736998
-0.56329-0.609673023-0.422408998-0.420848995-0.422443002
-0.566855013-0.609673023-0.421710998-0.420152009-0.422210008
-0.563444972-0.608277023-0.421633989-0.420617014-0.42166701
-0.566699982-0.609673023-0.420780987-0.418834001-0.420581996
-0.563678026-0.609053016-0.421169013-0.419066995-0.420892
-0.560654998-0.606571019-0.420084-0.418446988-0.419883996
-0.564297974-0.609363019-0.422098994-0.419919014-0.421745002
-0.562128007-0.606881022-0.422021002-0.420538992-0.421900004
-0.563058019-0.609207988-0.420704007-0.419299006-0.420194
-0.564530015-0.608433008-0.420780987-0.419144005-0.420504004
-0.561043024-0.603779018-0.422176003-0.42030701-0.421588987
-0.562902987-0.609130979-0.420316011-0.418368995-0.420194
-0.56476301-0.609517992-0.420082986-0.417593986-0.420581996
-0.564607978-0.609207988-0.417757988-0.416198999-0.418101013
-0.569644988-0.614248991-0.421866-0.42038399-0.421822011
-0.568095028-0.611998975-0.421943992-0.419997007-0.422520012
-0.564530015-0.610682011-0.421866-0.419687003-0.421433985
-0.561353028-0.605175018-0.421633989-0.41960901-0.42166701
-0.559493005-0.605485976-0.421014011-0.419532001-0.420736998
-0.562825024-0.607424021-0.421014011-0.418989003-0.420892
-0.563058019-0.608277023-0.421633989-0.420152009-0.421202004
-0.567009985-0.611379027-0.421710998-0.419997007-0.421900004
-0.56251502-0.606725991-0.421014011-0.419299006-0.421202004
-0.566157997-0.611069024-0.42109099-0.419687003-0.420969009
-0.562825024-0.607657015-0.420859009-0.419532001-0.421124011
-0.564297974-0.610216022-0.421710998-0.419376999-0.420814008
-0.559803009-0.602383971-0.420859009-0.419532001-0.421124011
-0.561972976-0.607578993-0.422408998-0.42038399-0.421900004
-0.565304995-0.611612022-0.421478987-0.419687003-0.421202004
-0.563832998-0.609363019-0.420316011-0.418678999-0.419961989
-0.569413006-0.611379027-0.419773012-0.418137014-0.419728994
-0.56329-0.606494009-0.421014011-0.419066995-0.421124011
-0.563444972-0.608200014-0.42178899-0.420152009-0.421124011
-0.564530015-0.606261015-0.42109099-0.419532001-0.421124011
-0.56724298-0.61215502-0.422253996-0.420073986-0.422210008
-0.556858003-0.604089975-0.421478987-0.419919014-0.421357006
-0.566235006-0.611999989-0.421633989-0.42030701-0.421977013
-0.565383017-0.610992014-0.420549005-0.419221997-0.420426995
-0.563368022-0.607347012-0.421245992-0.419144005-0.421357006
-0.562205017-0.60858798-0.423184007-0.42108199-0.421977013
-0.566699982-0.608897984-0.421478987-0.41960901-0.421279013
-0.563832998-0.609906018-0.422331005-0.421158999-0.422675014
-0.560500026-0.60719198-0.421866-0.42030701-0.42166701
-0.563522995-0.607501984-0.421943992-0.420152009-0.421588987
-0.562748015-0.607734978-0.421014011-0.419687003-0.421202004
-0.567629993-0.611688972-0.422331005-0.420617014-0.421512008
-0.567009985-0.611844003-0.422719002-0.421003997-0.422288001
-0.562049985-0.607580006-0.421943992-0.420848995-0.422443002
-0.563754976-0.608277023-0.421014011-0.419299006-0.421433985
-0.56329-0.60789001-0.421478987-0.41960901-0.421512008
-0.564220011-0.60858798-0.420084-0.418756992-0.420426995
-0.561353028-0.608044982-0.419773012-0.418368995-0.420349002
-0.567088008-0.609750986-0.42178899-0.420228988-0.422288001
-0.566003025-0.609130979-0.421324015-0.419997007-0.42159
-0.56398797-0.60789001-0.419851005-0.417982012-0.419883996
-0.562049985-0.605874002-0.421633989-0.419764012-0.421047002
-0.565614998-0.611688972-0.421169013-0.419919014-0.421433985
-0.563135028-0.611612022-0.421478987-0.419997007-0.421202004
-0.565614998-0.61075902-0.420859009-0.419687003-0.420736998
-0.566778004-0.611612022-0.42178899-0.42030701-0.421822011
-0.567552984-0.609363019-0.420780987-0.418989003-0.420349002
-0.565847993-0.61006099-0.421555996-0.420152009-0.421433985
-0.564994991-0.608897984-0.421866-0.42038399-0.421822011
-0.562205017-0.608044982-0.420316011-0.418446988-0.420349002
-0.560887992-0.607268989-0.421169013-0.419299006-0.421357006
-0.556005001-0.605175972-0.421014011-0.419066995-0.420814008
-0.561043024-0.603003979-0.420704007-0.419144005-0.420349002
-0.564607978-0.610526979-0.421400994-0.419532001-0.420892
-0.56398797-0.607967019-0.42109099-0.419144005-0.421279013
-0.563058019-0.609596014-0.420780987-0.418756992-0.420349002
-0.564607978-0.608121991-0.420549005-0.419299006-0.420659006
-0.56398797-0.608820021-0.420704007-0.419532001-0.421822011
-0.565073013-0.60928601-0.420626014-0.419144005-0.420271993
-0.561197996-0.604012012-0.419618011-0.418368995-0.419961989
-0.558408022-0.601531029-0.419541001-0.417052001-0.418567002
-0.563522995-0.607967019-0.420859009-0.419299006-0.419883996
-0.563135028-0.607967019-0.422253996-0.419687003-0.421512008
-0.56398797-0.607580006-0.421014011-0.419066995-0.420892
-0.563600004-0.607734978-0.42178899-0.419842005-0.420659006
-0.561197996-0.605408013-0.421400994-0.419454008-0.421279013
-0.563678026-0.607268989-0.421245992-0.419376999-0.421433985
-0.562902987-0.608976007-0.423570991-0.421624005-0.422443002
-0.56251502-0.608200014-0.421555996-0.419997007-0.421279013
-0.567009985-0.611302018-0.421943992-0.420152009-0.422520012
-0.562438011-0.606804013-0.421400994-0.419532001-0.421357006
-0.566157997-0.611302018-0.421633989-0.419764012-0.420969009
-0.563600004-0.605951011-0.420859009-0.418678999-0.420814008
-0.564917982-0.61006099-0.422021002-0.419842005-0.420892
-0.56406498-0.610370994-0.419773012-0.41782701-0.419418991
-0.560577989-0.607037008-0.422098994-0.420152009-0.422132999
-0.563600004-0.609596014-0.420394003-0.418756992-0.420038998
-0.563212991-0.609983027-0.421633989-0.420228988-0.421124011
-0.568792999-0.611069024-0.419851005-0.417982012-0.419108987
-0.562748015-0.606105983-0.420859009-0.418756992-0.420736998
-0.562979996-0.608121991-0.421633989-0.419997007-0.421279013
-0.563832998-0.60571897-0.420316011-0.418989003-0.420736998
-0.567009985-0.611998975-0.421943992-0.420228988-0.421512008
-0.556159973-0.603779972-0.421245992-0.41960901-0.420659006
-0.56251502-0.606958985-0.420006007-0.418213993-0.420038998
-0.565847993-0.610526979-0.422331005-0.420848995-0.422675014
-0.562902987-0.611533999-0.421324015-0.41960901-0.421047002
-0.559570014-0.605175018-0.420394003-0.419144005-0.419961989
-0.562669992-0.607114017-0.420935988-0.418834001-0.420349002
-0.56073302-0.607347012-0.422564-0.420848995-0.422443002
-0.56398797-0.60928601-0.422098994-0.420073986-0.42159
-0.562979996-0.608510017-0.421400994-0.42038399-0.421357006
-0.566468-0.609673023-0.420549005-0.41860199-0.420271993
-0.563754976-0.608820975-0.421245992-0.418523997-0.420892
-0.560113013-0.606105983-0.419773012-0.418213993-0.419961989
-0.564220011-0.610372007-0.420161009-0.418291986-0.419497013
-0.564220011-0.610680997-0.422176003-0.420538992-0.421977013
-0.563522995-0.609596014-0.420239002-0.418911994-0.420038998
-0.563368022-0.609983981-0.421324015-0.420073986-0.421357006
-0.561739981-0.60432303-0.422564-0.420771986-0.421745002
-0.562748015-0.609053016-0.420082986-0.418678999-0.419806987
-0.565693021-0.609596014-0.420780987-0.41790399-0.420581996
-0.565537989-0.609827995-0.418610007-0.416896999-0.418644011
-0.569103003-0.613783002-0.421710998-0.420228988-0.421822011
-0.568714976-0.612542987-0.422641009-0.420462012-0.422984987
-0.565304995-0.610293984-0.422331005-0.42030701-0.42236501

推荐答案


这篇关于对列进行排序并找到标准偏差的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-16 02:08