本文介绍了numpy.memmap映射以保存文件的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试创建随机矩阵,并使用numpy.save将其保存在二进制文件中

I'm trying to create random matrix and save it in binary file using numpy.save

然后我尝试使用numpy.memmap映射此文件,但似乎映射错误.

Then I try to map this file using numpy.memmap, but it seems it maps it wrong.

如何解决?

似乎它读了.npy标头,我需要从头开始对一些字节进行加密.

It seems it read .npy header and I need to scip some bytes from begining.

rows=6
cols=4

def create_matrix(rows,cols):
    data = (np.random.rand(rows,cols)*100).astype('uint8') #type for image [0 255] int8?
    return data

def save_matrix(filename, data):
    np.save(filename, data)

def load_matrix(filename):
    data= np.load(filename)
    return data

def test_mult_ram():
    A= create_matrix(rows,cols)
    A[1][2]= 42
    save_matrix("A.npy", A)
    A= load_matrix("A.npy")
    print A
    B= create_matrix(cols,rows)
    save_matrix("B.npy", B)
    B= load_matrix("B.npy")
    print B




fA = np.memmap('A.npy', dtype='uint8', mode='r', shape=(rows,cols))
fB = np.memmap('B.npy', dtype='uint8', mode='r', shape=(cols,rows))
print fA
print fB

更新:

我刚刚发现np.lib.format.open_memmap函数已经存在.

I just found that already np.lib.format.open_memmap function exist.

用法:a = np.lib.format.open_memmap('A.npy',dtype ='uint8',mode ='r +')

usage:a = np.lib.format.open_memmap('A.npy', dtype='uint8', mode='r+')

推荐答案

npy格式具有使用np.memmap时必须跳过的标头.它以6字节的魔术字符串'\x93NUMPY',2字节的版本号开头,然后是2字节的标头长度,然后是标头数据.

The npy format has a header that must be skipped when using np.memmap. It starts with an 6-byte magic string, '\x93NUMPY', 2 byte version number, followed by 2 bytes header length, followed by header data.

因此,如果打开文件,找到标题长度,则可以计算偏移量以传递给np.memmap:

So if you open the file, find the header length, then you can compute the offset to pass to np.memmap:

def load_npy_to_memmap(filename, dtype, shape):
    # npy format is documented here
    # https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
    with open(filename, 'r') as f:
        # skip magic string \x93NUMPY + 2 bytes major/minor version number
        # + 2 bytes little-endian unsigned short int
        junk, header_len = struct.unpack('<8sh', f.read(10))

    data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
    return data


import struct
import numpy as np
np.random.seed(1)
rows = 6
cols = 4

def create_matrix(rows, cols):
    data = (np.random.rand(
        rows, cols) * 100).astype('uint8')  # type for image [0 255] int8?
    return data

def save_matrix(filename, data):
    np.save(filename, data)

def load_matrix(filename):
    data= np.load(filename)
    return data

def load_npy_to_memmap(filename, dtype, shape):
    # npy format is documented here
    # https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
    with open(filename, 'r') as f:
        # skip magic string \x93NUMPY + 2 bytes major/minor version number
        # + 2 bytes little-endian unsigned short int
        junk, header_len = struct.unpack('<8sh', f.read(10))

    data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
    return data

def test_mult_ram():
    A = create_matrix(rows, cols)
    A[1][2] = 42
    save_matrix("A.npy", A)
    A = load_matrix("A.npy")
    print A
    B = create_matrix(cols, rows)
    save_matrix("B.npy", B)
    B = load_matrix("B.npy")
    print B

    fA = load_npy_to_memmap('A.npy', dtype='uint8', shape=(rows, cols))
    fB = load_npy_to_memmap('B.npy', dtype='uint8', shape=(cols, rows))
    print fA
    print fB
    np.testing.assert_equal(A, fA)
    np.testing.assert_equal(B, fB)

test_mult_ram()

这篇关于numpy.memmap映射以保存文件的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-15 19:56