P1470 最长前缀 Longest Prefix

题目描述

在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序列分解成较短的序列(即元素)很感兴趣。

如果一个集合 P 中的元素可以通过串联(元素可以重复使用,相当于 Pascal 中的 “+” 运算符)组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。元素不一定要全部出现(如下例中BBC就没有出现)。举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素:

{A, AB, BA, CA, BBC}

序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一个大写字母序列 S ,设S'是序列S的最长前缀,使其可以分解为给出的集合P中的元素,求S'的长度K。

输入输出格式

输入格式:

输入数据的开头包括 1..200 个元素(长度为 1..10
)组成的集合,用连续的以空格分开的字符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.”
的行。集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串来表示,每行不超过 76
个字符。换行符并不是序列 S 的一部分。

输出格式:

只有一行,输出一个整数,表示 S 符合条件的前缀的最大长度。

输入输出样例

输入样例#1:

A AB BA CA BBC
.
ABABACABAABC
输出样例#1:

11

说明

翻译来自NOCOW

USACO 2.3

【题解】

dp[i]表示前i个字符能否被拼

tire树从后往前建,这样可以避免枚举子串长度,少一个L

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b)) inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} struct Node
{
char c;
int next[];
int flag;
}tree[]; int cnt; char s[ + ],tmp[ + ];
void insert()
{
int len = strlen(tmp + );
int p = ;
for(register int i = len;i >= ;-- i)
if(tree[p].next[tmp[i] - 'A']) p = tree[p].next[tmp[i] - 'A'];
else ++cnt, tree[cnt].c = tmp[i], tree[p].next[tmp[i] - 'A'] = cnt, p = cnt;
tree[p].flag = ;
} int dp[ + ], ans; int main()
{
cnt = ;
while(scanf("%s", tmp + ) != EOF && tmp[] != '.')
insert();
int len = ;
while(scanf("%s", s + len) != EOF)
len = strlen(s + ) + ;
dp[] = ;
for(register int i = ;i <= len;++ i)
{
int p = , tmp = i;
while(p && tmp)
{
p = tree[p].next[s[tmp] - 'A'], -- tmp;
if(tree[p].flag)
{
if(dp[tmp])dp[i] = ;
if(dp[i])break;
}
}
if(dp[i]) ans = i;
}
printf("%d", ans);
return ;
}

洛谷P1470

05-17 17:52