Minimum Modular

题意:就是在一堆数字中,每一个数字对m取模不能等于这堆数字中的其他数字,同时给了K个机会可以删除一些数字。求最小的m;

思路:我一开始完全没思路,队长说的并查集什么的不会,于是就看了看别人的题解,看到可以用暴力剪枝的做法;

  至于减枝的做法就是;

    首先想到暴力,从小到大枚举m,然后判断n个数中对m取模同余个数有多少,如果超出k就枚举更大的m。然而这样的话,时间复杂度为O(n*1e6)。然后在网上找了博客看,但是有些地方当时自己感觉很不好理解的,这里做下自己的解释。1.首先这里用了一个剪枝,这个剪枝能节省大量时间。因为如果有k+1个数都是对m取模同余,那么只需删除k个数,就可以让剩下的数(只剩下一个数)不同余,那么从k+1个同余的数中取出2个数组成同余对的组合数就有C(2,k+1)种,即k*k+1/2种,那么如果对m取模同余的同余对的组合数大于k*k+1/2种,说明无法删除k个数使得剩下的数不同余。2.然后暴力判断此时满足1步骤的m作为模是否能满足同余的数小于k个。

  

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; const int maxn = +; int a[maxn],n,k,re[maxn],h[maxn]; int main(){
scanf("%d%d",&n,&k);
int max = -;
memset(re,,sizeof(re));
memset(h,,sizeof(h));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(max < a[i])max = a[i];
}
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
int tmp = a[i] - a[j]>?a[i]-a[j]:a[j]-a[i];
h[tmp]++;
}
} int res, flag =; for(int m=;m<=max+;m++)
{
int tk = k;
int sum = ;
flag = ;
for(int i=m;i<=1e6;i+=m)
{
sum+=h[i]; //剪枝操作
if(sum>k*(k+)/)break;
}
if(sum>k*(k+)/)continue;
res = m;
for(int i=; i<=n; i++)
{
if(!re[a[i]%res])re[a[i]%res]++;
else
{
tk--; //这里不能直接把k给减了
if(tk<){flag =;break;}
}
}
for(int i=;i<=n;i++)
{
re[a[i]%m]=; //注意每次都要清零,也可以用memset就是速度慢点
}
if(flag)break;
}
printf("%d\n",res);
}
05-17 00:22