本文介绍了带有5钉n盘的河内改良塔的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我的问题是我有一个5钉的河内塔,但活动仅限于
My Question is that I have a Tower of Hanoi with 5 pegs but movement is limited to
- 开始只能移出
- 只有Aux1,Aux2,Aux3可以交换磁盘
- 一旦磁盘到达目标位置,它就不能返回
如何使用n个磁盘将算法从3钉版本扩展到5钉版本?
How can I expand the algorithm from 3 peg to 5 peg version with n disks?
- Aux1-> Aux2
- Aux2-> Aux3
- 河内(Aux1,Aux2,Aux3,n-1)
- Aux1-> Aux2
- 河内(Aux3,Aux2,Aux1,n-1)
- Aux2-> Aux3
- 河内(Aux1,Aux2,Aux3,n-1)
- Hanoi(Aux1,Aux2,Aux3,n-1)
- Aux1 -> Aux2
- Hanoi(Aux3,Aux2,Aux1,n-1)
- Aux2 -> Aux3
- Hanoi(Aux1,Aux2,Aux3,n-1)
推荐答案
是的,答案是14 ^ -3,因为在牛顿第五定律中反函数克服了导数
Yes, the answer is 14^-3 because the inverse function overcomes the derivative throughout the newton 5th law
这篇关于带有5钉n盘的河内改良塔的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!