RMQ是英文Range Minimum/Maximum Query的缩写,是询问某个区间内的最值,这里讲一种解法:ST算法
ST算法通常用在要多次(10^6级别)询问区间最值的问题中,相比于线段树,它实现更简单,效率更高,但不支持修改,且一般只能维护最值。
ST算法实际上是动规,原理如下:
预处理:
一组数a[1]..a[n],设f[i][j]表示从a[i]到a[i+2^j-1]这个范围中的最值,元素个数为2^j个。
可以分成2部分,即从a[i]至a[i+2^(j-1)-1]与a[i+2^(j-1)]至a[i+2^j-1],所以
f[i][j]也可以分成f[i][j-1]与f[i+2^(j-1)][j-1],整个区间的最大值一定是左右两部分最大值的较大值,
于是可得状态转移方程:f[i][j]=max(f[i][j-1],f[i+2^(j-1)][j-1]),边界条件为f[i][0]=a[i],这样即可在O(n log(n))的时间内预处理f数组。
询问:
若询问区间[l,r]的最大值,可以先求出最大的x,满足2^x<=r-l+1,那么区间[l,r]=[l,l+2^x-1]U[r-2^x+1,r],两个区间的元素个数都为2^x,
所以[l,r]中的最大值为max(f[l][x],f[r-2^x+1][x]),可以在O(1)内计算出来(对于m次询问,需要O(m)的时间复杂度)。这两个区间虽然有交集,但对最值没有影响,这就是ST算法只使用于区间最值的原因。
总结:
求区间[x,y]的最大值:
k=log2(y-x+1);
ans=max(f[x][k],f[y-2^k+1][k]);
技巧:
因为cmath库中的log2函数效率不高,所以为了提高速度,通常会使用O(N)的递推预处理出1~N这N种区间长度各自对应的k值。
具体地,设log[x]表示log2(x)向下取整,则log[x]=log[x/2]+1。这样总时间复杂度为log(n*log(n)+m+n)。
放一道例题:
平衡阵容(Balanced Lineup)
题目描述
每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛. 但是为了避免水平悬殊,牛的身高不应该相差太大. John 准备了Q (1 <= Q <= 180,000) 个可能的牛的选择和所有牛的身高 (1 <= 身高 <= 1,000,000). 他想知道每一组里面最高和最低的牛的身高差别. 注意: 在最大数据上, 输入和输出将占用大部分运行时间.
输入
输出
6
3
0
[参考程序]
#include<iostream>
#include<cstring>
#include<cstdio>
#include<climits>
#include<cmath>
#include<algorithm>
using namespace std; const int N = ;
int FMAX[N][], FMIN[N][]; void RMQ(int n)
{
for(int j = ; j != ; ++j)
{
for(int i = ; i <= n; ++i)
{
if(i + ( << j) - <= n)
{
FMAX[i][j] = max(FMAX[i][j - ], FMAX[i + ( << (j - ))][j - ]);
FMIN[i][j] = min(FMIN[i][j - ], FMIN[i + ( << (j - ))][j - ]);
}
}
}
} int main()
{
int num, query;
int a, b;
while(scanf("%d %d", &num, &query) != EOF)
{
for(int i = ; i <= num; ++i)
{
scanf("%d", &FMAX[i][]);
FMIN[i][] = FMAX[i][];
}
RMQ(num);
while(query--)
{
scanf("%d%d", &a, &b);
int k = (int)(log(b - a + 1.0) / log(2.0));
int maxsum = max(FMAX[a][k], FMAX[b - ( << k) + ][k]);
int minsum = min(FMIN[a][k], FMIN[b - ( << k) + ][k]);
printf("%d\n", maxsum - minsum);
}
}
return ;
}
参考书籍:《信息学奥赛一本通·提高篇》