容纯干货,先从一个例子说起

>>> 0.1+0.2==0.3
False

当你第一次看到这个结果时可能会非常惊讶,原来还有个这么大的bug,再来看看表达式 0.1+0.2 到底等于多少?

>>> 0.1+0.2
0.30000000000000004

完全超出我们的想象。那么这个操作在计算机里面到底发生了什么事情?

我们还是回到二进制。

首先,需要明确一点,在计算机中无论是整数、浮点数、还是字符串最终都是用二进制来表示的。

整数的二进制表示法

整数 9 在计算机中二进制表示是: 1001 ,怎么得来的?

用十进制整数整除以2,得到商和余数,该余数就是二进制数的最低位,然后继续用商整除以2,得到新的商和余数,以此类推,直到商等于0,由所有余数倒排组成了该整数的二进制表现形式。用代码表示是:

>>> n = 9
>>> while n >0:
    n,e = divmod(n, 2) # divmod返回n除以2的商和余数
    print(e)
1 # 低位
0
0
1 # 高位

二进制转化为十进制整数

我们知道,十进制用科学计算法可表示为:

123 = 1*10^2 + 2*10^1 + 3*10^0
= 100 + 20 + 3
= 123

同样的道理,如果是二进制数,可表示:

1001 = 1*2^3 + 0*2^2 +0*2^1 + 1*2^0
= 8+0+0+1
= 9

再来看浮点数

浮点数的二进制表示法

二进制小数和二进制整数没什么区别,都是由0和1组成,只是多了一个点,例如:101.11 就是一个二进制小数,对应的十进制数是:

101.11 = 1*2^2 + 0*2^1 + 1*2^0 + 1*2^-1 + 1* 2^-2
= 4 + 0 + 1 + 1/2 + 1/4
= 5 + 0.5 + 0.25
= 5.75

小数点左边用 2^n 表示,小数点右边的值用 2^-n来表示。

浮点数转换成二进制小数

十进制的浮点数转换成二进制小数的步骤:

  • 小数点前面的整数部分按照十进制转二进制的方式操作

  • 小数部分乘以2,取整数0或者1,剩下的小数继续乘2一直重复,直到小数部分为0或达到指定的精度为止

例如 2.25 转换成二进制小数,整数2转换为二进制是 10, 小数部分0.25转换二进制是:

0.25 * 2 = 0.5  整数为0,小数为0.5
0.5 * 2 = 1.0   整数为1,小数为0

所以 2.25 表示成二进制小数是 10.01 , 但并不是每一个浮点数都这么幸运最后乘2小数为0的,比如 0.2 转换成二进制是:

0.2*2 = 0.4  整数为0,小数为0.4
0.4*2 = 0.8  整数为0,小数为0.8
0.8*2 = 1.6  整数为1,小数为0.6
0.6*2 = 1.2  整数为1,小数为0.2
0.2*2 = 0.4  整数为0,小数为0.4
0.4*2 = 0.8  整数为0,小数为0.8
0.8*2 = 1.6  整数为1,小数为0.6
0.6*2 = 1.2  整数为1,小数为0.2
一直重复 ....

0.2 用二进制表示是 0.001100110011… ,你会发现 0.2 根本没法用二进制来精确表示。就像 1/3 无法用小数精确表示一样,只能取一个近似值。

如果把这个二进制小数 0.001100110011 转换回10进制是:

0.001100110011 = 1*2^-3 + 1* 2^-4 + 1* 2^-7 + 1* 2^-8 + 1* 2^-11 + 1* 2^-12
= 1/8 + 1/16 +1/128 + 1/256 + 1/2048 + 1/4096
= 0.199951171875

这只是一个接近 0.2 的数,精度越高就越靠近 0.2, 但永远不可能等于0.2。那么在计算机内部,浮点数到底怎么存储的呢?

根据国际标准IEEE 754,一个二进制浮点数 V 分为3部分,可以用下面这个公式来表示:

只有1%的Python 程序员搞懂过浮点数陷阱-LMLPHP

  • s表示符号位,当s=0,V为正数;

    当s=1,V为负数

  • M表示有效数字, 1<=M<2

  • E表示指数位

例如十进制1.25,写成二进制是1.01,用该公式表示相当于 1.01×2^0。可以得出s=0,M=1.01,E=0。

IEEE 754规定

1、对于32位的浮点数,最高位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

只有1%的Python 程序员搞懂过浮点数陷阱-LMLPHP

2、对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

只有1%的Python 程序员搞懂过浮点数陷阱-LMLPHP

3、M的第一位总是1,会被舍去,比如保存1.01的时候,实际上只保存小数点后面的01部分

4、E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

基于以上规则,我们可以对浮点数进行验证,可以用下面这个函数查看一个浮点数在计算机中实际存储的值:

import struct
def float_to_bits(f):
s = struct.pack('>f', f)
return struct.unpack('>l', s)[0]

>>>print(float_to_bits(0.2))
1045220557
print(bin(float_to_bits(0.2)))
0b111110010011001100110011001101

浮点数 0.2 实际存储的值是 1045220557,对应的二进制是 111110010011001100110011001101,转换成32位整数还要在前面补2个0,最后变成:

0 01111100 10011001100110011001101

最高位为0,所以表示正数,接着8位 01111100 是指数位E,对应整数是124,根据IEEE 754规定,E的真实值要减去127,所以E=-3,最后23为是M的值,因为前面省略了一位,所以M的真实值是:

1.10011001100110011001101

最后V的值就是:

1.10011001100110011001101*2^-3=0.00110011001100110011001101=1/8 + 1/16 +1/128 + 1/256 + 1/2048 + 1/4096 + ...=0.20000000298023224

它的实际值比 0.2 要大一点点,所以才看到了最开始的那一幕。

  不要太过急功近利, 慢慢玩, 精进.

  如果你觉着编程有趣, 成长也就不再痛苦, 祝学习愉快.

06-06 07:25