本文介绍了如何为此数据类型编写Semigroup实例?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试在中进行一项Semigroup练习(第15章Monoid,Semigroup )但我卡住了。以下给出:

  newtype合并ab = 
合并{unCombine ::(a - > b)}

我应该写 Semigroup 实例为 Combine



然后书说它必须表现如下:

  Prelude>让f =合并$ \\\
- >总和(n + 1)
前奏> let g = Combine $ \\\
- > Sum(n - 1)
Prelude> unCombine(f<> g)$ 0
Sum {getSum = 0}
Prelude> unCombine(f< g)$ 1
Sum {getSum = 2}
Prelude> unCombine(f<> f)$ 1
Sum {getSum = 4}
Prelude> unCombine(g<> f)$ 1
Sum {getSum = 2}

因此,我首先开始了一个错误的解决方案类型检查:

 实例Semigroup(Combine ab)where 
组合f<>合并g =合并f

这当然没有预期的结果,但希望在右侧迈出一步方向。我的想法如下所示,使用伪码:

pre code实例Semigroup(Combine ab)其中
(Combine f )<> (Combine g)= Combine(SOMETHING)

SOMETHING 为: f g 附加,无论具体的附加操作是什么(它取决于 f g );所以我认为这需要来自 Data.Monoid <> ,但我已经有在我的代码中导入Data.Semigroup ,因此从 Data.Monoid <> >与 Data.Semigroup 中的一致。所以我应该怎么做?



我试图找出如何说明Combine(f Monoid's< g),但不能找出。



本书还指出,除非我使用GHC 8.x,否则我必须导入 Semigroup 和我可能会从 Monoid 中隐藏<> ;但我正在努力寻找如何产生这种效果。



有什么想法?

解决方案

他们想要的可能是功能的增加。为此,输入 b 需要是一个半群:

  import Data .Semigroup 

newtype Combine ab =
Combine {unCombine ::(a - > b)}

实例Semigroup b =>半群(Combine a b)其中
(Combine f)<> (Combine g)= Combine(\ x - > f x> g x)


I'm trying to do one of the Semigroup exercises in Haskell Book (Chapter 15, "Monoid, Semigroup") but I'm stuck. The following is given:

newtype Combine a b =
  Combine { unCombine :: (a -> b) }

and I'm supposed to write the Semigroup instance for Combine.

And then book says that it must behave like the following:

 Prelude> let f = Combine $ \n -> Sum (n + 1)
 Prelude> let g = Combine $ \n -> Sum (n - 1)
 Prelude> unCombine (f <> g) $ 0
 Sum {getSum = 0}
 Prelude> unCombine (f <> g) $ 1
 Sum {getSum = 2}
 Prelude> unCombine (f <> f) $ 1
 Sum {getSum = 4}
 Prelude> unCombine (g <> f) $ 1
 Sum {getSum = 2}

So I first started with a wrong solution that type checks:

instance Semigroup (Combine a b) where
  Combine f <> Combine g = Combine f

That does not what is expected of course, but hopefully a step in the right direction. And my thinking is something like the following, in pseudocode:

 instance Semigroup (Combine a b) where
   (Combine f) <> (Combine g) = Combine (SOMETHING)

That SOMETHING being: f and g appended, whatever that concrete append operation is (it depends on f and g); so I think this requires <> from Data.Monoid, but I already have import Data.Semigroup in my code, and therefore <> from Data.Monoid coincides with the one from Data.Semigroup. So what am I supposed to do?

I tried to find out how I can state something like "Combine (f Monoid's <> g)", but couldn't find out.

The book also states unless I'm using GHC 8.x, I'll have to import Semigroup and that I might have "shadow" the <> from Monoid; but I'm struggling to find out how to have this effect.

Any ideas?

解决方案

What they want is probably the addition of functions. For that, type b needs to be a Semigroup :

import Data.Semigroup

newtype Combine a b =
  Combine { unCombine :: (a -> b) }

instance Semigroup b => Semigroup (Combine a b) where
  (Combine f) <> (Combine g) = Combine (\x -> f x <> g x)

这篇关于如何为此数据类型编写Semigroup实例?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-11 17:00