光
Time Limit: 10 Sec Memory Limit: 128 MB
Description
天猫有一个长方形盒子,长宽分别为A,B。
这个长方形盒子的内壁全部是镜面。
天猫在这个盒子的左下方放了一个激光灯。
这个灯可以照向盒子内的任意角度。
现在天猫想要打开这个激光灯,但是他想让光线按照如下规则照射:
1.这束光必须恰好打到盒子边缘反射D次,并且不能碰到任意一个角落(除了出发点以及结束点)。
2.这束光必须到达盒子右上角,并且结束反射。
天猫想要知道,所有合法的光线路线的长度平方和是多少。
作为一个资深OIer,你应该知道输出要对10^9+7取模。
Input
一行三个数,表示A、B、D。
Output
一个数,表示路径平方和。
Sample Input
3 3 2
Sample Output
180
HINT
D<=10^9, A,B<=10^6
Solution
首先,我们注意到若一束光在一个平面反射,相当于镜面一侧的物体对称到镜面另一侧,而光线穿过镜面照到物体成的虚像上。
所以,我们可以认为:有一个D∗D的网格,需要在这个网格上面找到一点(x,y),要满足x+y−2 = D,这样的话,我们把(0,0)与(x,y)连接起来,连线所经过的网格边就是镜面反射时经过的边。也就是说,任意的合法方案与整数对(x,y)是一一对应的。
注意,由于在反射过程中,不能碰到网格的角落,所以应该满足(0,0)与(x,y)连线上没有其他整点,也就是gcd(x,y)=1,即gcd(x,D+2)=1。
然后用莫比乌斯反演推一波式子,最后发现要用暴力解决qaq。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<bitset>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ;
const int Niyu = ; s64 A, B, D;
int P[ONE],num;
int vis[ONE];
s64 Ans; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Factor(int x)
{
for(int i=; i*i<=x; i++)
if(x % i == )
{
P[++num] = i;
while(x % i == ) x /= i;
}
if(x != ) P[++num] = x;
} int Calc(int n)
{
return (s64)n * (n+) % MOD * (*n+) % MOD * Niyu % MOD;
} void Deal()
{
int d = , N = ;
for(int i=; i<=num; i++)
if(vis[i]) d = (s64)d * P[i] % MOD ,N++;
N = N & ? MOD- : ;
Ans = Ans + (s64)N % MOD * d % MOD * d % MOD * Calc((D+) / d) % MOD,
Ans %= MOD;
} void Dfs(int T)
{
if(T > num) {Deal(); return;}
vis[T] = ; Dfs(T+);
vis[T] = ; Dfs(T+);
} int main()
{
cin>>A>>B>>D;
if(D & ) {printf(""); return ;}
Factor(D + );
Dfs();
printf("%d", (s64)(A * A % MOD + B * B % MOD) % MOD * Ans % MOD);
}