jzptab

Time Limit: 10 Sec  Memory Limit: 512 MB
[Submit][Status][Discuss]

Description

   求【BZOJ2693】jzptab [莫比乌斯反演]-LMLPHP

Input

  第一行一个 T 表示数据组数

  接下来T行 每行两个正整数 表示N、M

Output

  T行 每行一个整数 表示第i组数据的结果

Sample Input

  1
  4 5

Sample Output

  122

HINT

  T <= 10000
  N, M<=10000000

Solution

  我们先根据BZOJ2154运用莫比乌斯反演推到一个式子,然后优化求解:

【BZOJ2693】jzptab [莫比乌斯反演]-LMLPHP

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = ; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int f[ONE];
s64 Ans,sum[ONE]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getf(int MaxN)
{
f[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, f[i] = (-(s64)i*i%MOD+i+MOD)%MOD;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
f[i * prime[j]] = (s64)f[i] * prime[j] % MOD;
break;
}
f[i * prime[j]] = (s64)f[i] * f[prime[j]] % MOD;
}
}
for(int i=; i<=MaxN; i++)
sum[i] = (sum[i-] + f[i]) % MOD;
} s64 Sum(int n,int m)
{
return ((s64)n*(n+)/%MOD) * ((s64)m*(m+)/%MOD) % MOD;
} void Solve()
{
n=get(); m=get();
if(n > m) swap(n,m);
Ans = ;
for(int i=, j=; i<=n; i=j+)
{
j = min(n/(n/i), m/(m/i));
Ans += Sum(n/i,m/i) * ((s64)sum[j] - sum[i-] + MOD) % MOD;
Ans %= MOD;
}
printf("%lld\n",Ans);
} int main()
{
Getf(ONE-);
T=get();
while(T--)
Solve();
}
05-11 13:19