题意:
从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序)
分析:
虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是不知道怎么应用。
这里有关于莫比乌斯反演的知识,而且最后的例题中就有这道题并给出了公式的推导。
在最后的例题2中有个重要的结论:
#include <cstdio>
#include <algorithm>
typedef long long LL; const int maxn = ;
int mu[maxn + ], vis[maxn + ], prime[maxn], cnt; void Mobius()
{
mu[] = ;
cnt = ;
for(int i = ; i <= maxn; ++i)
{
if(!vis[i])
{
mu[i] = -;
prime[cnt++] = i;
}
for(int j = ; j < cnt && i*prime[j] <= maxn; ++j)
{
vis[i*prime[j]] = ;
if(i % prime[j] != ) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
} int main()
{
//freopen("1695in.txt", "r", stdin); Mobius();
int T;
scanf("%d", &T);
for(int kase = ; kase <= T; ++kase)
{
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k); if(k == )
{
printf("Case %d: 0\n", kase);
continue;
} b /= k, d /= k;
if(b > d) std::swap(b, d);
LL hehe = , haha = ;
for(int i = ; i <= b; ++i)
hehe += (LL)mu[i] * (b/i) * (d/i);
for(int i = ; i <= b; ++i)
haha += (LL)mu[i] * (b/i) * (b/i); //因为题目不区分xy的顺序,所以要减去重复的部分
LL ans = hehe - haha/; printf("Case %d: %I64d\n", kase, ans);
} return ;
}