//B. Delete from the Left
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=2e5+;
char a[N],b[N];
int main()
{
scanf("%s%s",a,b);
int lena=strlen(a);
int lenb=strlen(b);
int i=lena-,j=lenb-;
int sum=;
while(a[i]==b[j]&&i>=&&j>=)//s[-1]与p[-1]是不确定的
{ //因此加上i>=0&&j>=0 和下面的D题相似
sum++;
i--,j--;
}
printf("%d\n",lena+lenb-*sum);
return ;
}
//C. Summarize to the Power of Two
/*
2^(n-1) x 2^n 2^(n+1)
因为x<2^n,所以2*x<2^(n+1),那么x+y(0<x<y)一定位于
2^(n-1)和2^(n+1)之间。若x+y为2的指数幂,那么必定是2^n.
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=;
ll n;
ll a[N];
map<ll,ll>mp;
set<ll>s;
int main()
{
scanf("%lld",&n);
for(int i=;i<n;i++)
{
scanf("%lld",&a[i]);
mp[a[i]]++;
}
sort(a,a+n);//为了二分
s.clear();
for(int i=;i<n;i++)
{
ll ans=log2(a[i]);
ll ret=pow(,ans+)-a[i];
if(binary_search(a,a+i,ret))
{ //二分查找[) ,不会取到自己
s.insert(a[i]);
s.insert(ret);//set可以去重
}
}
ll cnt=;
for(auto it=s.begin();it!=s.end();it++){
cnt+=mp[*it];
}
printf("%lld\n",n-cnt);
return ;
}
/*
下面是简单的二分查找函数
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%lld",&a[i]);
}
ll m;
while(~scanf("%lld",&m)){
if(binary_search(a+1,a+4,m)){//[)
cout<<"yes\n";
}
else{
cout<<"no\n";
}
}
return 0;
} 5
1 2 3 4 5
1
no
2
yes
3
yes
4
yes
5
no */ //C. Summarize to the Power of Two
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
ll n;
map<ll,ll>mp;
const int M=1.3e5+;
ll a[M];
int main()
{
scanf("%lld",&n);
for(ll i=;i<n;i++)
{
scanf("%lld",&a[i]);
mp[a[i]]++;
}
ll ans=;
bool flag;
for(ll i=;i<n;i++)
{
flag=;
mp[a[i]]--;//将a[i]先取出
//为了避免a[i]与(1<<j)-a[i]是同位置
//当然也有其他的方法
//if(mp[(1<<j)-a[i]]==1&&a[i]!=(1<<j)-a[i]||mp[(1<<j)-a[i]]>1)
//出现多次,可以互相替换,1次只要两者不等,就一定不是同一位置
//不相等一定不是同位置
for(int j=;j<=;j++)
{
if(mp[(<<j)-a[i]])
{
flag=;
break;
}
}
if(!flag)
ans++;
mp[a[i]]++;//再恢复
}
printf("%lld\n",ans);
return ;
}
////D. Polycarp and Div 3
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=2e5+;
ll dp[N];
char s[N];
int main()
{
scanf("%s",s+);
/*
if(s[1]=='1'&&s[2]=='1'){
if(strlen(s+1)==2){
printf("0\n");
return 0;
}
}
*/ int lens=strlen(s+);
memset(dp,,sizeof(dp));
if((s[]-'')%==){
dp[]=;
}
//int i,j,k,sum;
for( int i=;i<=lens;i++)
{
dp[i]=dp[i-];
//cout<<"iii"<<i<<endl;
for( int j=i-;j>=;j--)//起初没加j>=0
{ //如dp[-1]=dp[0]=dp[1]=0 。数组的负下标问题
//可能令最终的结果有问题,也会时间更长
if(dp[j]!=dp[i-])
break;
if(s[j+]==''&&i-j>)
continue;
//cout<<dp[j]<<" "<<dp[i-1]<<endl;
int sum=;
for(int k=i;k>=j+;k--)
{
sum=(sum+(s[k]-''))%;
}
//cout<<"sum "<<sum<<endl;
if(sum==)
{
dp[i]=max(dp[i],dp[j]+);
} }
//cout<<i<<" "<<dp[i]<<endl;
}
printf("%lld\n",dp[lens]);
return ;
} //D. Polycarp and Div 3
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=2e5+;
int main()
{
char s[N];
scanf("%s",s);
int sum=,cnt=,tmp;
int ans=;
for(int i=;s[i];i++)
{
tmp=(s[i]-'')%;
sum+=tmp;
cnt++;
if(tmp==||sum%==||cnt==)
{
ans++;
sum=cnt=;
}
}
printf("%d\n",ans);
return ;
}
// E1 - Median on Segments (Permutations Edition)
//区间内大于m的数的个数-小于m的数的个数(sum)==0or1
//在m出现之前依次记录sum,用map存储每个sum出现的个数
//等到m出现后,每当遇到一个sum,ans+=(sum出现的次数)+(sum-1出现的次数)
//sum sum 区间内大于m的数的个数-小于m的数的个数==0
//sum(前面) sum-1(后面) 区间内大于m的数的个数-小于m的数的个数==1
//m出现后不再增加sum出现的次数,因为那些区间不会包含m
//符合条件的区间一定要包含m
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=2e5+;
int n,m,a[N];
map<ll,ll>mp;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
}
ll sum=;
mp[]=;
bool flag=;
ll ans=;
for(int i=;i<n;i++)
{
if(a[i]<m)
sum--;
else if(a[i]>m)
sum++;
if(a[i]==m)
flag=;
if(flag){
ans+=mp[sum]+mp[sum-];
}
else{
mp[sum]++;
}
}
printf("%lld\n",ans);
return ;
}