opencv绕图片中任意角度旋转任意角度
最近在做项目需要把把图片绕图片中任意点旋转任意角度,考虑到自己旋转需要编写插值算法,所以想到了用opencv,但是网上都是围绕图片中点旋转任意角度的,都是向下面这样写的:
绕图片中心旋转图片不裁剪#include"opencv.hpp"
#include<iostream>
using namespace std;
using namespace cv;
int main() {
Mat src = imread("timg.jpg");
Mat des,m;
Point2f center = Point(src.cols / 2, src.rows / 2);
double angle = 50,scale=0.5;
int w = src.cols, h = src.rows;
int bound_w = (h * fabs(sin(angle * CV_PI / 180)) + w * fabs(cos(angle * CV_PI / 180))) * scale;
int bound_h = (h * fabs(cos(angle * CV_PI / 180)) + w * fabs(sin(angle * CV_PI / 180))) * scale;
m = getRotationMatrix2D(center, angle, scale);
m.at<double>(0, 2) += (bound_w - src.cols) / 2;
m.at<double>(1, 2) += (bound_h - src.rows) / 2;
warpAffine(src,des,m,Size2i(bound_h,bound_w));
imshow("image",des);
waitKey();
return 0;
旋转之后的效果:
但是遇到绕任意点旋转时,会产生问题,用这种方式还是会存在裁剪,如果要理解绕任意点旋转,需要先理解函数getRotationMatrix2D,这个函数处理过程如下面矩阵表示所示:
具体实现代码如下:
Mat src = imread("/home/sss/1111.jpg", IMREAD_GRAYSCALE);
Mat des, m;
//旋转的任意角度
double angle = 45;
int w = src.cols, h = src.rows;
Point2f rorate_center;
//旋转的任意中心
rorate_center.x = w;
rorate_center.y = h;
//重新计算旋转后的宽和高
int bound_w = ceil(h * fabs(sin(angle * CV_PI / 180.0)) + w * fabs(cos(angle * CV_PI / 180.0)));
int bound_h = ceil(h * fabs(cos(angle * CV_PI / 180.0)) + w * fabs(sin(angle * CV_PI / 180.0)));
m = getRotationMatrix2D(rorate_center, angle, 1.0);
//通过eigen计算旋转矩阵
Eigen::Matrix3d T1;
T1 << 1, 0, -rorate_center.x,
0, 1, -rorate_center.y,
0, 0, 1;
Eigen::Matrix3d T2;
T2 << 1, 0, rorate_center.x,
0, 1, rorate_center.y,
0, 0, 1;
Eigen::Matrix3d rorate;
rorate << cos(angle * CV_PI / 180.0), sin(angle * CV_PI / 180.0), 0,
-sin(angle * CV_PI / 180.0), cos(angle * CV_PI / 180.0), 0,
0, 0, 1;
Eigen::Matrix3d T = T2 * rorate * T1;
//计算原来矩阵的四个顶点经过变换后的顶点
Eigen::Matrix<double,3, 1> left_top_p, right_top_p, right_bottom_p, left_botoom_p;
left_top_p << 0, 0, 1;
right_top_p << w, 0, 1;
right_bottom_p << w, h, 1;
left_botoom_p << 0, h , 1;
left_top_p = T * left_top_p;
right_top_p = T * right_top_p;
right_bottom_p = T * right_bottom_p;
left_botoom_p = T * left_botoom_p;
//找到经过变换过定位的最大最小值
double min_x = 10000, min_y = 10000;
//min_x
if(left_top_p[0] < min_x){
min_x = left_top_p[0];
}
if(right_top_p[0] < min_x){
min_x = right_top_p[0];
}
if(right_bottom_p[0] < min_x)
{
min_x = right_bottom_p[0];
}
if(left_botoom_p[0] < min_x){
min_x = left_botoom_p[0];
}
//min_y
if(left_top_p[1] < min_y){
min_y = left_top_p[1];
}
if(right_top_p[1] < min_y){
min_y = right_top_p[1];
}
if(right_bottom_p[1] < min_y)
{
min_y = right_bottom_p[1];
}
if(left_botoom_p[1] < min_y){
min_y = left_botoom_p[1];
}
double max_x = -1000, max_y = -1000;
//max_x
if(left_top_p[0] > max_x){
max_x = left_top_p[0];
}
if(right_top_p[0] > max_x){
max_x = right_top_p[0];
}
if(right_bottom_p[0] > max_x)
{
max_x = right_bottom_p[0];
}
if(left_botoom_p[0] > max_x){
max_x = left_botoom_p[0];
}
//max_y
if(left_top_p[1] > max_y){
max_y = left_top_p[1];
}
if(right_top_p[1] > max_y){
max_y = right_top_p[1];
}
if(right_bottom_p[1] > max_y)
{
max_y = right_bottom_p[1];
}
if(left_botoom_p[1] > max_y){
max_y = left_botoom_p[1];
}
//将偏置添加到矩阵中
m.at<double>(0, 2) += -min_x;
m.at<double>(1, 2) += -min_y;
//变换,最后不会存在裁剪
warpAffine(src, des , m , Size2i(bound_w , bound_h),
INTER_LINEAR, 0, Scalar(100, 100, 100));
imwrite("/home/sss/222.jpg", des);
return 0;
经过变换过的图片不会存在裁剪: