问题描述
我想在 TensorFlow 中创建 heaviside 阶跃函数.由于 Heaviside 函数不可微,我还需要选择导数近似并定义自定义梯度,因此完整的实现如下所示:
I want to create heaviside step function in TensorFlow. Since Heaviside function is not differentiable I also need to choose derivative approximation and define custom gradient so full implementation looks like this:
import tensorflow as tf
@tf.RegisterGradient("HeavisideGrad")
def _heaviside_grad(unused_op: tf.Operation, grad: tf.Tensor):
x = unused_op.inputs[0]
# During backpropagation heaviside behaves like sigmoid
return tf.sigmoid(x) * (1 - tf.sigmoid(x)) * grad
def heaviside(x: tf.Tensor, g: tf.Graph = tf.get_default_graph()):
custom_grads = {
"Sign": "HeavisideGrad"
}
with g.gradient_override_map(custom_grads):
# TODO: heaviside(0) currently returns 0. We need heaviside(0) = 1
sign = tf.sign(x)
# tf.stop_gradient is needed to exclude tf.maximum from derivative
step_func = sign + tf.stop_gradient(tf.maximum(0.0, sign) - sign)
return step_func
在我的实现中有一个警告:tf.sign(0)
返回零值,所以 heaviside(0)
也返回零,我想要 heaviside(0)
返回 1. 我怎样才能实现这种行为?
There is one caveat in my implementation: tf.sign(0)
returns zero value so heaviside(0)
also returns zero and I want heaviside(0)
to return 1. How can I achieve such behavior?
推荐答案
一个非常hacky 的方法是使用
A very hacky way would be to use
1 - max(0.0, sign(-x))
作为您的步进函数而不是
as your step function instead of
max(0.0, sign(x))
另一种选择是使用 Greater_equal 并将结果转换为您想要的类型,并使用您已有的 sigmoid 覆盖覆盖其梯度.
Another option would be to use greater_equal and cast the result to your desired type, and override its gradient with the sigmoid override you already have.
这篇关于在 TensorFlow 中实现 heaviside 阶跃函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!