本文介绍了使用BIC准则运行逐步线性模型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
是否可以设置逐步线性模型以使用BIC标准而不是AIC?
Is it possible to set a stepwise linear model to use the BIC criteria rather than AIC?
我一直在尝试,但是它仍然使用AIC值而不是BIC来计算每个步骤
I've been trying this but it still calculates each step using AIC values rather than BIC
null = lm(data[,1] ~ 1)
full = lm(data[,1] ~ age + bmi + gender + group)
step(null, scope = list(lower=null,upper=full),
direction="both", criterion = "BIC")
推荐答案
将参数k=log(n)
添加到step
函数(模型矩阵中n
个样本的数量)
Add the argument k=log(n)
to the step
function (n
number of samples in the model matrix)
来自?step
:
k 用于惩罚的自由度数的倍数. 只有k = 2才是真正的AIC; k = log(n)有时被称为 作为BIC或SBC.
k the multiple of the number of degrees of freedom used for the penalty. Only k = 2 gives the genuine AIC; k = log(n) is sometimes referred to as BIC or SBC.
这篇关于使用BIC准则运行逐步线性模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!