问题描述
相对于整洁的评估而言,这是一个相对较新的功能,而我正在使用这些功能时,我想知道为什么要使用不同的帮助程序功能.例如,enquo
和ensym
有什么区别?在下面我用来捕获每日平均和移动平均的函数中,它们是可以互换的:
Relatively new to tidy evaluation and while the functions I'm making work, I want to know why different helper functions are used. For example, what is the difference between enquo
and ensym
? In the function I made below to capture daily average and moving average they're interchangeable:
library(dplyr)
library(lubridate)
library(rlang)
library(zoo)
manipulate_for_ma <- function(data, group_var, da_col_name, summary_var, ma_col_name) {
group_var <- ensym(group_var)
summary_var <- enquo(summary_var)
da_col_name <- ensym(da_col_name)
ma_col_name <- enquo(ma_col_name)
data %>%
group_by(!!group_var) %>%
summarise(!!da_col_name := mean(!!summary_var, na.rm = TRUE)) %>%
mutate(!!ma_col_name := rollapply(!!da_col_name,
30,
mean,
na.rm = TRUE,
partial = TRUE,
fill = NA)) %>%
rename(date = !!group_var)
}
lakers %>%
mutate(date = ymd(date)) %>%
manipulate_for_ma(group_var = date,
da_col_name = points_per_play_da,
summary_var = points,
points_per_play_ma)
# A tibble: 78 x 3
date points_per_play_da points_per_play_ma
<date> <dbl> <dbl>
1 2008-10-28 0.413 0.458
2 2008-10-29 0.431 0.459
3 2008-11-01 0.408 0.456
4 2008-11-05 0.386 0.457
我已经了解了enquo
此处和ensym
(此处) [ https://adv-r.hadley.nz/quasiquotation.html] .区别在于ensym
的限制更严格,只接受字符串或类似字符串的对象吗?
I've read about enquo
here and ensym
(here)[https://adv-r.hadley.nz/quasiquotation.html]. Is the difference that ensym
is more restrictive and only takes strings or string-like objects?
推荐答案
另一种方法:
library(rlang)
library(dplyr, warn.conflicts = FALSE)
test <- function(x){
Species <- "bar"
cat("--- enquo builds a quosure from any expression\n")
print(enquo(x))
cat("--- ensym captures a symbol or a literal string as a symbol\n")
print(ensym(x))
cat("--- evaltidy will evaluate the quosure in its environment\n")
print(eval_tidy(enquo(x)))
cat("--- evaltidy will evaluate a symbol locally\n")
print(eval_tidy(ensym(x)))
cat("--- but both work fine where the environment doesn't matter\n")
identical(select(iris,!!ensym(x)), select(iris,!!enquo(x)))
}
Species = "foo"
test(Species)
#> --- enquo builds a quosure from any expression
#> <quosure>
#> expr: ^Species
#> env: global
#> --- ensym captures a symbol or a literal string as a symbol
#> Species
#> --- evaltidy will evaluate the quosure in its environment
#> [1] "foo"
#> --- evaltidy will evaluate a symbol locally
#> [1] "bar"
#> --- but both work fine where the environment doesn't matter
#> [1] TRUE
test("Species")
#> --- enquo builds a quosure from any expression
#> <quosure>
#> expr: ^"Species"
#> env: empty
#> --- ensym captures a symbol or a literal string as a symbol
#> Species
#> --- evaltidy will evaluate the quosure in its environment
#> [1] "Species"
#> --- evaltidy will evaluate a symbol locally
#> [1] "bar"
#> --- but both work fine where the environment doesn't matter
#> [1] TRUE
test(paste0("Spec","ies"))
#> --- enquo builds a quosure from any expression
#> <quosure>
#> expr: ^paste0("Spec", "ies")
#> env: global
#> --- ensym captures a symbol or a literal string as a symbol
#> Only strings can be converted to symbols
这篇关于使用dplyr进行编程时,ensym和enquo有什么区别?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!