问题描述
我正在尝试实施 ZCA美白并找到了一些相关文章,但它们有些令人困惑..有人能为我照耀吗?
Im trying to implement ZCA whitening and found some articles to do it, but they are a bit confusing.. can someone shine a light for me?
感谢任何提示或帮助!
这是我读过的文章:
http://courses.media.mit.edu/2010fall/mas622j/whiten.pdf http://bbabenko.tumblr .com/post/86756017649/learning-low-level-vision-feautres-in-10-lines-of
我尝试了几件事,但其中大多数我不理解,因此被锁在了某个步骤.现在,我以此为基础再次开始:
I tried several things but most of them i didnt understand and i got locked at some step.Right now i have this as base to start again :
dtype = np.float32
data = np.loadtxt("../inputData/train.csv", dtype=dtype, delimiter=',', skiprows=1)
img = ((data[1,1:]).reshape((28,28)).astype('uint8')*255)
推荐答案
以下是用于生成ZCA白化矩阵的python函数:
Here is a python function for generating the ZCA whitening matrix:
def zca_whitening_matrix(X):
"""
Function to compute ZCA whitening matrix (aka Mahalanobis whitening).
INPUT: X: [M x N] matrix.
Rows: Variables
Columns: Observations
OUTPUT: ZCAMatrix: [M x M] matrix
"""
# Covariance matrix [column-wise variables]: Sigma = (X-mu)' * (X-mu) / N
sigma = np.cov(X, rowvar=True) # [M x M]
# Singular Value Decomposition. X = U * np.diag(S) * V
U,S,V = np.linalg.svd(sigma)
# U: [M x M] eigenvectors of sigma.
# S: [M x 1] eigenvalues of sigma.
# V: [M x M] transpose of U
# Whitening constant: prevents division by zero
epsilon = 1e-5
# ZCA Whitening matrix: U * Lambda * U'
ZCAMatrix = np.dot(U, np.dot(np.diag(1.0/np.sqrt(S + epsilon)), U.T)) # [M x M]
return ZCAMatrix
以及用法示例:
X = np.array([[0, 2, 2], [1, 1, 0], [2, 0, 1], [1, 3, 5], [10, 10, 10] ]) # Input: X [5 x 3] matrix
ZCAMatrix = zca_whitening_matrix(X) # get ZCAMatrix
ZCAMatrix # [5 x 5] matrix
xZCAMatrix = np.dot(ZCAMatrix, X) # project X onto the ZCAMatrix
xZCAMatrix # [5 x 3] matrix
希望有帮助!
EdgarAndrésMargffoy Tuay 的答案不正确的原因的详细信息:如前所述在 RM 的, EdgarAndrésMargffoy Tuay 的ZCA白化功能包含一个小而关键的错误:应删除np.diag(S)
. Numpy以m x 1向量而不是m x m矩阵的形式返回S
(这在其他svd实现中很常见,例如Matlab).因此,ZCAMatrix
变量变为m x 1向量,而不是应有的m x m矩阵(当输入为m x n时). (此外,只有当X预先居中时,Andfoy答案中的协方差矩阵才有效,即均值为0.)
Details for why Edgar Andrés Margffoy Tuay's answer is not correct: As pointed out in R.M's comment, Edgar Andrés Margffoy Tuay's ZCA whitening function contains a small, but crucial mistake: the np.diag(S)
should be removed. Numpy returns S
as a m x 1 vector and not a m x m matrix (as is common to other svd implementations, e.g. Matlab). Hence the ZCAMatrix
variable becomes a m x 1 vector and not a m x m matrix as it should be (when the input is m x n). (Also, the covariance matrix in Andfoy's answer is only valid if X is pre-centered, i.e mean 0).
ZCA的其他参考:您可以在Python中看到斯坦福UFLDL ZCA Whitening练习的完整答案此处.
Other references for ZCA: You can see the full answer, in Python, to the Stanford UFLDL ZCA Whitening exercise here.
这篇关于如何实施ZCA美白? Python的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!