问题描述
有人可以告诉我如何从python中的ROC曲线计算均等错误率(EER)吗?在scikit-learn中,有一种计算roc曲线和auc的方法,但找不到用于计算EER的方法.
Could anybody tell me how could I compute Equal Error Rate(EER) from ROC Curve in python? In scikit-learn there is method to compute roc curve and auc but could not find the method to compute EER.
from sklearn.metrics import roc_curve, auc
ANSRWER:
我想我实现了自己.
ROC EER的想法是直线连接之间的交点(1,0)和(0,1)以及roc曲线.它是唯一相交的点.对于a = 1和b = 1的直线,等式为 x+y =1 (x/a +y/b =1.0)
.因此,交点将为真正率(tpr)和假正率(fpr)的值,它表示以下等式:
The idea of ROC EER is the intersection point between a stright line joining(1,0) and (0,1) and the roc Curve. It is a only point where it intersects. For a straight line with a=1 and b=1, the equation would be x+y =1 (x/a +y/b =1.0)
. So the intersection point would be the values of true positive rate (tpr) and false positive rate (fpr) which statisfies the following equation:
x + y - 1.0 = 0.0
因此将方法实现为:
def compute_roc_EER(fpr, tpr):
roc_EER = []
cords = zip(fpr, tpr)
for item in cords:
item_fpr, item_tpr = item
if item_tpr + item_fpr == 1.0:
roc_EER.append((item_fpr, item_tpr))
assert(len(roc_EER) == 1.0)
return np.array(roc_EER)
因此,这里的一个值是错误率,另一个值是准确性.
So here one value is error rate and another value is accuracy.
也许有人可以帮助我进行验证.
May be somebody could help me to verify.
推荐答案
适用于通过Google搜索到达此处的任何其他人.正如格哈德(Gerhard)指出的那样,弗兰(Fran)的答案是错误的.正确的代码是:
For any one else whom arrives here via a Google search. The Fran answer is incorrect as Gerhard points out. The correct code would be:
fpr, tpr, threshold = roc_curve(y, y_pred, pos_label=1)
fnr = 1 - tpr
eer_threshold = threshold(np.nanargmin(np.absolute((fnr - fpr))))
请注意,这可以获取未发生EER的阈值,即EER. EER定义为FPR = 1-PTR = FNR.因此,要获得EER(实际错误率),您可以使用以下代码:
Note that this gets you the threshold at which the EER occurs not, the EER. The EER is defined as FPR = 1 - PTR = FNR. Thus to get the EER (the actual error rate) you could use the following:
EER = fpr(np.nanargmin(np.absolute((fnr - fpr))))
作为健全性检查,该值应接近
as a sanity check the value should be close to
EER = fnr(np.nanargmin(np.absolute((fnr - fpr))))
因为这是一个近似值.
since this is an approximation.
这篇关于Python中的平均错误率的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!