本文介绍了要解释以下确定系数的结果的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

你好团队

您能帮我解释一下下面的结果吗?

Can you please help me to interpret below result?

哪些是好的值,哪些是坏的值?

Which are the good values and which are bad values?

据我所知,接近1的测定系数很好,但是R平方剂量的作用还应该接近1.

As per my knowledge the Coefficient of Determination near to one is good one, but what is role of R-squared dose this also needs to be near to value 1.

请提供您的宝贵想法.

此致

RPBH

 

推荐答案

感谢您的反馈.让我提供有关这些概念的更多信息. R平方不必在1左右(这几乎是不可能的). RMSD始终为非负值,值0(在实践中几乎从未实现)表示对数据的完美拟合.通常,较低的RMSD优于较高的RMSD.但是,比较不同类型的数据会 之所以无效,是因为该量度取决于所用数字的标度. RMSD是平方误差平均值的平方根.每个误差对RMSD的影响与平方误差的大小成正比.因此更大 错误对RMSD的影响特别大.因此,RMSD对异常值敏感.

Thanks for the feedback here. Let me provide more information about those concepts. R-squared don't need to be around 1(It is almost impossible).RMSD is always non-negative, and a value of 0 (almost never achieved in practice) would indicate a perfect fit to the data. In general, a lower RMSD is better than a higher one. However, comparisons across different types of data would be invalid because the measure is dependent on the scale of the numbers used. RMSD is the square root of the average of squared errors. The effect of each error on RMSD is proportional to the size of the squared error; thus larger errors have a disproportionately large effect on RMSD. Consequently, RMSD is sensitive to outliers.

此致

宇通


这篇关于要解释以下确定系数的结果的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-24 18:17