问题描述
我有一个熊猫数据框
您需要在<$ c中包含'name'
在[43]中:
分组= df.groupby(['desk_id','shift_id','shift_hour','name'])。size()
grouped = grouped.reset_index()
grouped.columns = np。其中(grouped.columns == 0,'count',grouped.columns)#取消默认0到'count'
打印分组
desk_id shift_id shift_hour名字数
0 15557987 37423064 0 AdamScott 1
1 15557987 37423064 2 Adam Scott 3
15557987 37423064 3 Adam Scott 1
如果name-to-id关系是多对一的类型,比如说我们有一个pete scott来处理同一组数据,那么结果就会变成:
desk_id shift_id shift_hour name count
0 15557987 37423064 0 Adam Scott 1
1 15557987 37423064 0 Pete Scott 1
2 15557987 37423064 2 Adam Scott 3
3 15557987 37423064 2 Pete Scott 3
4 15557987 37423064 3 Adam Scott 1
15557987 37423064 3 Pete Scott 1
I've got a pandas dataframe df. I group it by 3 columns, and count the results. When I do this I lose some information, specifically, the name column. This column is mapped 1:1 with the desk_id column. Is there anyway to include both in my final dataframe?
here is the dataframe:
shift_id shift_start_time shift_end_time name end_time desk_id shift_hour 0 37423064 2014-01-17 08:00:00 2014-01-17 12:00:00 Adam Scott 2014-01-17 10:16:41.040000 15557987 2 1 37423064 2014-01-17 08:00:00 2014-01-17 12:00:00 Adam Scott 2014-01-17 10:16:41.096000 15557987 2 2 37423064 2014-01-17 08:00:00 2014-01-17 12:00:00 Adam Scott 2014-01-17 10:52:17.402000 15557987 2 3 37423064 2014-01-17 08:00:00 2014-01-17 12:00:00 Adam Scott 2014-01-17 11:06:59.083000 15557987 3 4 37423064 2014-01-17 08:00:00 2014-01-17 12:00:00 Adam Scott 2014-01-17 08:27:57.998000 15557987 0
I group it like this:
grouped = df.groupby(['desk_id', 'shift_id', 'shift_hour']).size() grouped = grouped.reset_index()
And here is the result, missing the name column.
desk_id shift_id shift_hour 0 0 14468690 37729081 0 7 1 14468690 37729081 1 3 2 14468690 37729081 2 6 3 14468690 37729081 3 5 4 14468690 37729082 0 5
Also, anyway to rename the count column as 'count' instead of '0'?
You need to include 'name' in groupby by groups:
In [43]: grouped = df.groupby(['desk_id', 'shift_id', 'shift_hour', 'name']).size() grouped = grouped.reset_index() grouped.columns=np.where(grouped.columns==0, 'count', grouped.columns) #replace the default 0 to 'count' print grouped desk_id shift_id shift_hour name count 0 15557987 37423064 0 Adam Scott 1 1 15557987 37423064 2 Adam Scott 3 2 15557987 37423064 3 Adam Scott 1
If the name-to-id relationship is a many-to-one type, say we have a pete scott for the same set of data, the result will become:
desk_id shift_id shift_hour name count 0 15557987 37423064 0 Adam Scott 1 1 15557987 37423064 0 Pete Scott 1 2 15557987 37423064 2 Adam Scott 3 3 15557987 37423064 2 Pete Scott 3 4 15557987 37423064 3 Adam Scott 1 5 15557987 37423064 3 Pete Scott 1
这篇关于大 pandas groupby后失踪列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!