题目描述
地平线(x轴)上有n个矩(lou)形(fang),用三个整数h[i],l[i],r[i]来表示第i个矩形:矩形左下角为(l[i],0),右上角为(r[i],h[i])。地平线高度为0。在轮廓线长度最小的前提下,从左到右输出轮廓线。
下图为样例2
输入输出格式
输入格式:
第一行一个整数n,表示矩形个数
以下n行,每行3个整数h[i],l[i],r[i]表示第i个矩形。
输出格式:
第一行一个整数m,表示节点个数
以下m行,每行一个坐标表示轮廓线上的节点。从左到右遍历轮廓线并顺序输出节点。第一个和最后一个节点的y坐标必然为0。
输入输出样例
输入样例#1:
【样例输入1】
2
3 0 2
4 1 3 【样例输入2】
5
3 -3 0
2 -1 1
4 2 4
2 3 7
3 6 8
输出样例#1:
【样例输出1】
6
0 0
0 3
1 3
1 4
3 4
3 0 【样例输出2】
14
-3 0
-3 3
0 3
0 2
1 2
1 0
2 0
2 4
4 4
4 2
6 2
6 3
8 3
8 0
说明
【数据范围】
对于30%的数据,n<=100
对于另外30%的数据,n<=100000,1<=h[i],l[i],r[i]<=1000
对于100%的数据,1<=n<=100000,1<=h[i]<=10^9,-10^9<=l[i]<r[i]<=10^9
思路
1.扫描线:
先把每个矩形拆成两条边,一条入边,一条出边,然后按照横坐标以及高度排序,同时还需要一个堆实时记录高度,然后一遍从左到右的遍历就可以求出每个交点和交点的个数,然后即可解.
2.离散化+线段树
(贼麻烦)...
上代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int read()
{
char ch=getchar();int f=,w=;
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){w=w*+ch-'';ch=getchar();}
return f*w;
} struct ls{
int up;
int x;
int k;
}l[maxn]; struct ss{
int ax;
int ay;
}ans[maxn*];
int n,cnt,num;
multiset<int>s; int cmp(ls i,ls j)
{
if(i.x!=j.x)return i.x<j.x;
if(i.k!=j.k)return i.k<j.k;
if(i.k==)return i.up>j.up;
if(i.k==)return i.up<j.up;
} int main(){
n=read();
for(int i=;i<=n;i++){
int h,ll,r;
h=read(),ll=read(),r=read();
l[++cnt].up=h; l[cnt].x=ll;l[cnt].k=;
l[++cnt].up=h; l[cnt].x=r,l[cnt].k=;
}
sort(l+,l+cnt+,cmp);
s.insert();
for(int i=;i<=cnt;i++){
int mx=*s.rbegin();
if(l[i].k==){
if(l[i].up<=mx) s.insert(l[i].up);
else{
++num;ans[num].ax=l[i].x;ans[num].ay=mx;
++num;ans[num].ax=l[i].x;ans[num].ay=l[i].up;
s.insert(l[i].up);
}
}
if(l[i].k==){
if(l[i].up==mx&&s.count(mx)==){
s.erase(mx);
ans[++num].ax=l[i].x; ans[num].ay=l[i].up;
ans[++num].ax=l[i].x;ans[num].ay=*s.rbegin();
}
else s.erase(s.find(l[i].up));
}
}
printf("%d\n",num);
for(int i=;i<=num;i++)
cout<<ans[i].ax<<' '<<ans[i].ay<<endl;
return ;
}