题目地址:https://www.nowcoder.com/acm/contest/136/J
解法一:
推数学公式求前n项和;
当k=1时,即为等差数列,S= n+pn(n−1)/2
当k≠1时,a+p/(k−1) = k(a+p/(k-1)),等比数列,S= (k+(p−1)k−(np+1)k+(n−1)p+1) / ((k-1)*(k-1))
因为是除法取模,故除快速幂外还需逆元;
Knowledge Point:
除法取模逆元:https://www.cnblogs.com/ECJTUACM-873284962/p/6847672.html
费马小定理:若p是质数,且a、p互质,那么a^(p-1) mod p = 1。
#include<iostream>
using namespace std; #define LL long long
const LL MOD = 1e9+;
LL n,k,p; LL pow(LL a, LL x)
{
LL tmp=;
while(x) {
if(x&)
tmp = tmp*a%MOD;
a = a*a%MOD;
x>>=;
}
return tmp;
} int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>k>>p)
{
if(k == )
cout<<(n+p*n*(n-)/)%MOD<<endl;
else {
LL t = pow(k,n);
LL ans = t*k+(p-)*t-k*(n*p+)+(n-)*p+;
ans = (ans%MOD+MOD)%MOD;
ans = ans*pow((k-)*(k-), MOD-)%MOD;
cout<<ans<<endl;
}
} return ;
}
解法二:
杜教板子:https://www.cnblogs.com/liubilan/p/9520292.html
直接套杜教板子;
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h> #define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (ll i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((ll )(x).size())
using namespace std;
typedef long long ll;
typedef vector<ll > VI; typedef pair<ll ,ll > PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head ll _,n;
namespace linear_seq {
const ll N=;
ll res[N],base[N],_c[N],_md[N]; vector<ll > Md;
void mul(ll *a,ll *b,ll k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (ll i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
ll solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// prll f("%d\n",SZ(b));
ll ans=,pnt=;
ll k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (ll p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (ll i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
ll L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
ll gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
ll n, k, p;
cin>>n>>k>>p;
ll sum[]; ///求出前10项
sum[]=;
for(ll i=;i<=;i++){
sum[i]=(sum[i-]*k%mod+p)%mod;
}
for(ll i=;i<=;i++){
sum[i]=(sum[i-]+sum[i])%mod;
} vector<ll >v;
for(ll i=;i<=;i++){
v.push_back(sum[i]); }
printf("%lld\n",linear_seq::gao(v,n-)); }