知识点:

n个元素,其中a1,a2,····,an互不相同,进行全排列,可得n!个不同的排列。

若其中某一元素ai重复了ni次,全排列出来必有重复元素,其中真正不同的排列数应为 hdu 5651 重复全排列+逆元-LMLPHP,即其重复度为ni!

同理a1重复了n1次,a2重复了n2次,····,ak重复了nk次,n1+n2+····+nk=n。

对于这样的n个元素进行全排列,可得不同排列的个数实际上是 hdu 5651 重复全排列+逆元-LMLPHP

由于题目要求是对100000007取余 同余定理中对于同一个除数,两个数的乘积与它们余数的乘积同余。但这里有除法所以得用上逆元

逆元

    • 定义: 
      满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。eg: 1=5*3-14 所以5关于模14的乘法逆元为3.

    • 应用: 
      当我们要求 (a/b) mod P 的值时,如果 a 很大,无法直接求得a/b的值时,我们就可以使用乘法逆元。我们可以通过求b关于P的乘法逆元k,将a乘上k再模P,即(a%P*k)。其结果与(a/b) mod P等价。

关于逆元的求解方法日后在做总结  这里用的是exgcd

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const LL MOD=1e9+;
int cnt[];
char ch[]; LL jiecheng(int n)
{
if(n==)
return ;
LL ans=;
for(int i=;i<=n;i++)
ans=ans*i%MOD;
return ans;
} LL x,y;
LL gcd(LL a,LL b)
{
LL t,d;
if(b==)
{
x=,y=;
return a;
}
d=gcd(b,a%b);
t=x, x=y, y=t-(a/b)*y;
return d;
} int main()
{
int t;
cin>>t;
while(t--)
{
memset(cnt,,sizeof(cnt));
scanf("%s",ch);
int len=strlen(ch);
for(int i=;i<len;i++)
{
cnt[ch[i]-' ']++;
}
int count=;
for(int i=;i<;i++)
{
if(cnt[i]&)
count++;
cnt[i]/=;
}
if(count>)
{
cout<<<<endl;
continue;
}
LL ans=jiecheng(len/)%MOD;
for(int i=;i<;i++)
{
if(cnt[i]>)
{
gcd(jiecheng(cnt[i]),MOD);
if(x<)
x+=MOD;// 求逆元
ans=ans*x%MOD;
}
}
cout<<ans<<endl;
}
}
05-26 14:08