本文介绍了pySpark数据框中的累积乘积的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有以下Spark DataFrame:

I have the following spark DataFrame:

+---+---+
|  a|  b|
+---+---+     
|  1|  1|  
|  1|  2|  
|  1|  3|
|  1|  4|
+---+---+  

我要创建另一个名为"c"的列,其中包含"b"对"a"的累加乘积.产生的DataFrame应该看起来像:

I want to make another column named "c" which contains the cumulative product of "b" over "a". The resulting DataFrame should look like:

+---+---+---+
|  a|  b|  c|
+---+---+---+     
|  1|  1|  1|
|  1|  2|  2|
|  1|  3|  6|
|  1|  4| 24|
+---+---+---+  

这怎么办?

推荐答案

您必须设置订单列.在您的情况下,我使用了列"b"

You have to set an order column. In your case I used column 'b'

from pyspark.sql import functions as F, Window, types
from functools import reduce
from operator import mul

df = spark.createDataFrame([(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)], ['a', 'b'])

order_column = 'b'

window = Window.orderBy(order_column)

expr = F.col('a') * F.col('b')

mul_udf = F.udf(lambda x: reduce(mul, x), types.IntegerType())

df = df.withColumn('c', mul_udf(F.collect_list(expr).over(window)))

df.show()

+---+---+---+
|  a|  b|  c|
+---+---+---+
|  1|  1|  1|
|  1|  2|  2|
|  1|  3|  6|
|  1|  4| 24|
|  1|  5|120|
+---+---+---+

这篇关于pySpark数据框中的累积乘积的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-14 00:55