本文介绍了用Python(pandas)计算可变现金流量IRR的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个不可预测的现金流量和不可预测的期间长度的DataFrame,并且我需要生成一个后向IRR.

I have a DataFrame of unpredictable cashflows and unpredictable period lengths, and I need to generate a backward-looking IRR.

使用求解器在Excel中进行操作非常简单,想知道是否存在在Python中实现它的好方法. (我认为我可以利用openpyxl来使求解器在python中以excel的形式工作,但这感觉不必要地麻烦.)

Doing it in Excel is pretty straightforward using the solver, wondering if there's a good way to pull it off in Python. (I think I could leverage openpyxl to get solver to work in excel from python, but that feels unnecessarily cumbersome).

问题很简单:

目标:找到IRR,其中SUM(NPV)= 0

GOAL: Find IRR where SUM(NPV) = 0

我的数据框看起来像这样:

My dataframe looks something like this:

cash_flow    |years_ago
-----------------------
-3.60837e+06 |4.09167    
31462        |4.09167    
1.05956e+06  |3.63333    
-1.32718e+06 |3.28056    
-4.46554e+06 |3.03889    

似乎其他IRR计算器(例如numpy.irr)都假定严格的截止期限(每3个月,1年等),这是行不通的.另一个选择似乎是迭代路线,在该路线中,我不断猜测,检查和迭代,但这似乎是解决此问题的错误方法.理想情况下,我正在寻找可以做到这一点的东西:

It seems as though other IRR calculators (such as numpy.irr) assume strict period cutoffs (every 3 months, 1 year, etc), which won't work. The other option seems to be the iterative route, where I continually guess, check, and iterate, but that feels like the wrong way to tackle this. Ideally, I'm looking for something that would do this:

irr = calc_irr((cash_flow1,years_ago1),(cash_flow2,years_ago2),etc)

这是我从中运行问题的代码.我有一个交易列表,我选择按ID创建临时表.

Here is the code I'm running the problem from. I have a list of transactions, and I've chosen to create temporary tables by id.

for id in df_tran.id.unique():
   temp_df = df_tran[df_tran.id == id] 

   cash_flow = temp_df.cash_flows.values
   years = temp_df.years.values

   print(id, cash_flow)
   print(years)
#irr_calc = irr(cfs=cash_flow, yrs=years,x0=0.100000)
#print(sid, irr_calc)

其中df_tran(temp_df所基于的)看起来像:

where df_tran (which temp_df is based on) looks like:

    cash_flow       |years     |id
0   -3.60837e+06     4.09167    978237
1   31462            4.09167    978237
4   1.05956e+06      3.63333    978237
6   -1.32718e+06     3.28056    978237
8   -4.46554e+06     3.03889    978237
10  -3.16163e+06     2.81944    978237
12  -5.07288e+06     2.58889    978237
14  268833           2.46667    978237
17  -4.74703e+06     1.79167    978237
20  -964987          1.40556    978237
22  -142920          1.12222    978237
24  163894           0.947222   978237
26  -2.2064e+06      0.655556   978237
27  1.23804e+06      0.566667   978237
29  180655           0.430556   978237
30  -85297           0.336111   978237
34  -2.3529e+07      0.758333   1329483
36  21935            0.636111   1329483
38  -3.55067e+06     0.366667   1329483
41  -4e+06           4.14167    1365051

temp_df看起来与df_tran相同,只不过它仅保存单个ID的事务.

temp_df looks identical to df_tran, except it only holds transactions for a single id.

推荐答案

您可以使用 scipy.optimize.fsolve :

You can use scipy.optimize.fsolve:

首先定义将成为fsolvefunc参数的函数.由于您的内部收益率,现金流量和年限,这是净现值. (使用NumPy矢量化.)

First define the function that will be the func parameter to fsolve. This is NPV as a result of your IRR, cash flows, and years. (Vectorize with NumPy.)

import numpy as np
def npv(irr, cfs, yrs):  
    return np.sum(cfs / (1. + irr) ** yrs)

一个例子:

cash_flow = np.array([-2., .5, .75, 1.35])
years = np.arange(4)

# A guess
print(npv(irr=0.10, cfs=cash_flow, yrs=years))
0.0886551465064

现在可以使用fsolve:

from scipy.optimize import fsolve
def irr(cfs, yrs, x0):
    return np.asscalar(fsolve(npv, x0=x0, args=(cfs, yrs)))

您的内部收益率是:

print(irr(cfs=cash_flow, yrs=years, x0=0.10))
0.12129650313214262

您可以确认这使您的NPV为0:

And you can confirm that this gets you to a 0 NPV:

res = irr(cfs=cash_flow, yrs=years, x0=0.10)
print(np.allclose(npv(res, cash_flow, years), 0.))
True

所有代码加在一起:

import numpy as np
from scipy.optimize import fsolve

def npv(irr, cfs, yrs):  
    return np.sum(cfs / (1. + irr) ** yrs)

def irr(cfs, yrs, x0, **kwargs):
    return np.asscalar(fsolve(npv, x0=x0, args=(cfs, yrs), **kwargs))

要使其与您的熊猫示例兼容,只需使用

To make this compatible with your pandas example, just use

cash_flow = df.cash_flow.values
years = df.years_ago.values

更新:您的问题中的值似乎有点荒谬(如果您的IRR甚至存在,您的IRR将会是一个天文数字),但是这是您的运行方式:

Update: the values in your question seem a bit nonsensical (your IRR is going to be some astronomical number if it even exists) but here is how you'd run:

cash_flow = np.array([-3.60837e+06, 31462, 1.05956e+06, -1.32718e+06, -4.46554e+06])    
years_ago = np.array([4.09167, 4.09167, 3.63333, 3.28056, 3.03889])

print(irr(cash_flow, years_ago, x0=0.10, maxfev=10000))
1.3977721900669127e+82

第二次更新:您的代码中有一些次要的错别字,您的$实际流量和计时结果对无意义的IRR起作用,但是下面是您想要做的事情.例如,请注意,您有一个ID,其中有一个单笔负交易,即一个负无限的IRR.

Second update: there are a couple minor typos in your code, and your actual flows of $ and timing work out to nonsensical IRRs, but here's what you're looking to do, below. For instance, notice you have one id with one single negative transaction, a negatively infinite IRR.

for i, df in df_tran.groupby('id'):
   cash_flow = df.cash_flow.values
   years = df.years.values
   print('id:', i, 'irr:', irr(cash_flow, years, x0=0.))

id: 978237 irr: 347.8254979851405
id: 1329483 irr: 3.2921314448062817e+114
id: 1365051 irr: 1.0444951674872467e+25

这篇关于用Python(pandas)计算可变现金流量IRR的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-14 00:53