题目链接:http://poj.org/problem?id=2728

题目:

Desert King(POJ2728+最优比率生成树+二分)-LMLPHP

Desert King(POJ2728+最优比率生成树+二分)-LMLPHP

题意:求一颗生成树,使得费用与距离的比值最小,其中距离等于两点之间的平面欧拉距离,费用为z坐标之差。

思路:Desert King(POJ2728+最优比率生成树+二分)-LMLPHP

  由上图我们可以得知,我们只需对x进行二分(最大化平均值),以cost[i]-len[i]*x为边权跑prime即可。

代码实现如下:

 #include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<ll, int> pli;
typedef pair<int, ll> pil;;
typedef pair<int, int> pii;
typedef unsigned long long ull; #define lson i<<1
#define rson i<<1|1
#define bug printf("*********\n");
#define FIN freopen("D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = ;
const int maxn = + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f; int n, x, y, z;
double ans;
int vis[maxn];
double mp[maxn][maxn], dis[maxn]; struct node {
int x, y ,z;
}p[maxn]; double dist(node& a, node& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} bool prime(double x) {
for(int i = ; i <= n; i++) {
dis[i] = inf;
vis[i] = ;
}
ans = ;
dis[] = ;
for(int i = ; ; i++) {
double mx = inf;
int t = -;
for(int j = ; j <= n; j++) {
if(!vis[j] & mx > dis[j]) {
mx = dis[j];
t = j;
}
}
if(t == -) break;
ans += mx;
vis[t] = ;
for(int j = ; j <= n; j++) {
if(!vis[j] && dis[j] > fabs(p[t].z - p[j].z) - mp[t][j] * x) {
dis[j] = fabs(p[t].z - p[j].z) - mp[t][j] * x;
}
}
}
return ans >= ;
} int main() {
//FIN;
while(~scanf("%d", &n) && n) {
for(int i = ; i <= n; i++) {
scanf("%d%d%d", &p[i].x, &p[i].y, &p[i].z);
}
for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
mp[i][j] = dist(p[i], p[j]);
}
}
double ub = , lb = , mid;
while(ub - lb > eps) {
mid = (ub + lb) / ;
if(prime(mid)) lb = mid;
else ub = mid;
}
printf("%.3f\n", lb);
}
return ;
}
05-28 21:48