本文介绍了如何最好地连接data.table的一列与同一data.table的另一列?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个data.table DT 与当前( F0YR )和下一个( F1YR )会计年度末(FYE)编码为整数。由于下一个FYE将最终变为
a当前FYE,整数将在 F1YR F0YR 。此外,我的数据包含每月观察,因此相同的FYE将在数据集
多次:

I have a data.table DT with the current (F0YR) and the next (F1YR) fiscal year-end (FYE) encoded as integers. Since every next FYE will eventually becomea current FYE, the integer will be both in the column F1YR and F0YR. Also, my data contains monthly observations so the same FYE will be in the data setmultiple times:

library(data.table)
DT <- data.table(ID     = rep(c("A", "B"), each=9),
                 MONTH  = rep(100L:108L, times=2),
                 F0YR   = rep(c(1L, 4L, 7L), each=3, times=2),
                 F1YR   = rep(c(4L, 7L, 9L), each=3, times=2),
                 value  = c(rep(1:5, each=3), 6, 6, 7),
                 key    = "ID,F0YR")
DT
      ID MONTH F0YR F1YR value
 [1,]  A   100    1    4     1
 [2,]  A   101    1    4     1
 [3,]  A   102    1    4     1
 [4,]  A   103    4    7     2
 [5,]  A   104    4    7     2
 [6,]  A   105    4    7     2
 [7,]  A   106    7    9     3
 [8,]  A   107    7    9     3
 [9,]  A   108    7    9     3
[10,]  B   100    1    4     4
[11,]  B   101    1    4     4
...



我想做什么



对于每个 ID F1YR 组合,我想获取 ID F0YR 组合。作为示例:对于 FOYR == 4 ,公司A具有值 2 。现在,
我想要一个额外的列与 ID ==A F1YR == 4

What I want to do

For every ID and F1YR combination, I want to get the value for the ID and F0YR combination. As an example: Company A had a value of 2 for FOYR==4. Now, I want an additional column for all combinations with ID=="A" and F1YR==4 which is set to 2, next to the already existent value of 1.

intDT <- DT[CJ(unique(ID), unique(F0YR)), list(ID, F0YR, valueNew = value), mult="last"]
setkey(intDT, ID, F0YR)
setkey(DT, ID, F1YR)
DT <- intDT[DT]
setnames(DT, c("F0YR.1", "F0YR"), c("F0YR", "F1YR"))
DT
      ID F1YR valueNew MONTH F0YR value
 [1,]  A    4        2   100    1     1
 [2,]  A    4        2   101    1     1
 [3,]  A    4        2   102    1     1
 [4,]  A    7        3   103    4     2
 [5,]  A    7        3   104    4     2
 [6,]  A    7        3   105    4     2
 [7,]  A    9       NA   106    7     3
 [8,]  A    9       NA   107    7     3
 [9,]  A    9       NA   108    7     3
[10,]  B    4        5   100    1     4
[11,]  B    4        5   101    1     4
...

(请注意,我使用 mult =last

这看起来很可行。首先,我必须复制我的DT。第二,因为我基本上加入了同样的 data.table ,所有的列名都有相同的名字
,我必须重命名它们。我认为一个 self join 将是向前的方式,但我试图,尝试,不能得到一个很好的解决方案。我有希望
,有一些容易,我只是没有看到...有人有线索吗?或者是我的数据设置的方式,其实是硬
(也许是因为我有每月的观察,但只想加入每季度或每年更改的值)。

This looks improvable. First of all, I have to make a copy of my DT. Second, since I join basically the same data.table, all the column names have the same nameand I have to rename them. I thought that a self join would be the way forward, but I tried and tried and couldn't get a nice solution. I have the hopethat there is something easy out there which I just don't see...Does anyone have a clue? Or is my data set up in such a way that it is actually hard(maybe because I have monthly observations, but want to join only quarterly or yearly changing values).

推荐答案

在这样的用例中,口头语聚合首先,然后加入经常有帮助。所以,从 DT 开始,并使用v1.8.1:

In use cases like this, the mantra "aggregate first, then join with that" often helps. So, starting with your DT, and using v1.8.1 :

> agg = DT[,last(value),by=list(ID,F0YR)]
> agg
   ID F0YR V1
1:  A    1  1
2:  A    4  2
3:  A    7  3
4:  B    1  4
5:  B    4  5
6:  B    7  7

我叫它 agg 因为我不能想到一个更好的名字。在这种情况下,你想要最后这不是一个真正的聚合,因此,但你知道我的意思。

I called it agg because I couldn't think of a better name. In this case you wanted last which isn't really an aggregate as such, but you know what I mean.

然后按组的引用更新 DT 。这里我们按 i 分组。

Then update DT by reference by group. Here we're grouping by i.

setkey(DT,ID,F1YR)
DT[agg,newcol:=V1]
    ID MONTH F0YR F1YR value newcol
 1:  A   100    1    4     1      2
 2:  A   101    1    4     1      2
 3:  A   102    1    4     1      2
 4:  A   103    4    7     2      3
 5:  A   104    4    7     2      3
 6:  A   105    4    7     2      3
 7:  A   106    7    9     3     NA
 8:  A   107    7    9     3     NA
 9:  A   108    7    9     3     NA
10:  B   100    1    4     4      5
11:  B   101    1    4     4      5
12:  B   102    1    4     4      5
13:  B   103    4    7     5      7
14:  B   104    4    7     5      7
15:  B   105    4    7     5      7
16:  B   106    7    9     6     NA
17:  B   107    7    9     6     NA
18:  B   108    7    9     7     NA

是吗?不确定我完全跟随。这些操作应该非常快,没有任何副本,应该扩展到大数据。至少,这是意图。

Is that right? Not sure I fully followed. Those ops should be very fast, without any copies, and should scale to large data. At least, that's the intention.

这篇关于如何最好地连接data.table的一列与同一data.table的另一列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-21 05:56