package com.jason.example import org.apache.spark.sql.functions.broadcast class DFTest extends SparkInstance { import spark.implicits._ val df = Seq(
("jason", , "理想",),
(null, , "理想",),
("mac", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df3 = Seq(
("jason", , "理想",),
("dong", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df2 = Seq(
(,"周浦",),
(,"孙桥",),
(,"金桥",)
).toDF("depid","addr","gid").repartition()
def ff(): Unit = {
println(df.toString())//[name: string, depid: int ... 1 more field]
println(df.schema)
df.printSchema()
df.explain(true)//Prints the plans (logical and physical) to the console for debugging purposes.
println(df.dtypes.mkString(","))//(name,StringType),(depid,IntegerType),(company,StringType)
println(df.columns.mkString(","))//
//df.withWatermark() ???
df.show(,false)
df.na.drop("any"/*"all"*/).show(false) //删除df中包含null 或NaN 的记录,如果为any 则只要有有一列为
//null 或NaN 则删除整行,如果是all 则所有列是null ho NaN 时才删除整行
df.na.fill("xxx",Seq("name")).show()//缺失值填充,把null 或 NaN 替换为所需要的值
df.na.replace("name",Map("jason"->"abc","dong"->"def")).show()//将字段name 中 的值按照map 内容进行更改
//df.stat.xxx ???
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"right").show()
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show() df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
println("="*)
df.join(df2.hint("broadcast"),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
df.join(broadcast(df2),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()//spark 默认广播10MB的小表
//df2.hint("broadcast") 和 broadcast(df2) 是等同的
df.crossJoin(df2).show()//笛卡尔积
df.sort($"name".desc,$"depid".asc).show()
df.select("name","depid").show()
df.selectExpr("name as nm","depid as id").show()
df.filter(s"""name='jason'""").show()
df.where(s"""name='jason'""").select("name","depid").show
df.rollup("name","depid").count().show()
df.cube("name","depid").count().show()
df.groupBy("name","depid").count().show()
df.agg("name"->"max","depid"->"avg").show()
df.groupBy("name","depid").agg("name"->"max","depid"->"avg").show()
df.limit().show()
df.union(df3).show()
df.unionByName(df3).show()
df.intersect(df3).show()//交集
df.except(df3).show() //差集
df.sample(0.5).show()
df.randomSplit(Array(0.4,0.6)).apply().show()
df.withColumn("depid",$"depid".<=()).show() // 该方法可以替换或增加一列到原df, 第二个参数中的col必须时df中的元素
df.withColumnRenamed("name","姓名").show()
df.drop("name","depid")//舍弃某几列
df.distinct()
df.dropDuplicates("name").show() //根据某几列去重,会保留最后一条数据
df.describe().show() //count,mean,min,max
df.summary().show()//count,min,25%,50%,max
df.head() //所有的数据会被collect到driver
df.toLocalIterator() spark.stop()
}
} object DFTest {
def main(args: Array[String]): Unit = {
val dt = new DFTest
dt.ff()
}
}