链接:https://vjudge.net/problem/HDU-3072

题意:

给你n个点,1个点到另一个点连接花费c,但是如果几个点可以相互可达,则这几个点连通花费为0.

求将整个图连通的最小花费。

思路:

tarjan,求出强连通子图。

对每个子图的进点的最小值更新,再累加即可,(不过不知道为什么)

代码:

#include <iostream>
#include <memory.h>
#include <string>
#include <istream>
#include <sstream>
#include <vector>
#include <stack>
#include <algorithm>
#include <map>
#include <queue>
#include <math.h>
#include <cstdio>
#include <set>
#include <iterator>
#include <cstring>
using namespace std; typedef long long LL;
const int MAXN = 5e4+10;
const int INF = 0x3f3f3f3f; struct Node
{
int from_, to_, value_;
Node(int from, int to, int value):from_(from), to_(to), value_(value){}
bool operator < (const Node &that) const
{
return this->value_ > that.value_;
}
}; vector<Node> G[MAXN];
stack<int> St;
int Dfn[MAXN], Low[MAXN];
int Vis[MAXN], Dis[MAXN];
int Fa[MAXN], Val[MAXN];
int Num[MAXN];
int n, m;
int times, cnt; void Init()
{
for (int i = 1;i <= n;i++)
G[i].clear(), Fa[i] = i;
memset(Dfn, 0, sizeof(Dfn));
memset(Low, 0, sizeof(Low));
memset(Vis, 0, sizeof(Vis));
memset(Dis, 0, sizeof(Dis));
memset(Num, 0, sizeof(Num));
memset(Val, 0, sizeof(Val));
times = cnt = 0;
} void Tarjan(int x)
{
Dfn[x] = Low[x] = ++times;
Vis[x] = 1;
St.push(x);
for (int i = 0;i < G[x].size();i++)
{
int node = G[x][i].to_;
if (Dfn[node] == 0)
{
Tarjan(node);
Low[x] = min(Low[x], Low[node]);
}
else if (Vis[node] == 1)
Low[x] = min(Low[x], Dfn[node]);
}
if (Low[x] == Dfn[x])
{
cnt++;
Num[cnt] = 0;
while (St.top() != x)
{
Num[cnt]++;
Fa[St.top()] = cnt;
Vis[St.top()] = 0;
St.pop();
}
Num[cnt]++;
Fa[St.top()] = cnt;
Vis[St.top()] = 0;
St.pop();
}
} int main()
{
int t, cn = 0;
while (~scanf("%d%d", &n, &m))
{
Init();
int l, r, v;
for (int i = 1;i <= m;i++)
{
scanf("%d%d%d", &l, &r, &v);
l++, r++;
G[l].emplace_back(l, r, v);
}
for (int i = 1;i <= n;++i)
if (!Dfn[i])
Tarjan(i);
for (int i = 1;i <= cnt;i++)
Val[i] = INF;
for (int i = 1;i <= n;i++)
{
for (int j = 0;j < G[i].size();j++)
{
int node = G[i][j].to_;
if (Fa[i] != Fa[node])
Val[Fa[node]] = min(Val[Fa[node]], G[i][j].value_);
}
}
int res = 0;
for (int i = 1;i <= cnt;i++)
if (Val[i] != INF)
res += Val[i];
cout << res << endl;
} return 0;
}

  

05-18 13:32