Problem Description
回文就是正反读都是一样的字符串,如aba, abba等
Input
输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S
两组case之间由空行隔开(该空行不用处理)
字符串长度len <= 110000
Output
每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度.
Sample Input
aaaa abab
Sample Output
4
3
先看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxx 101000
char s[maxx],s1[maxx*];
int mp[maxx*];
void Manacher(int l)
{
int k=;
s1[k++]='$';s1[k++]='#';
for(int i=;i<l;i++)
{
s1[k++]=s[i];
s1[k++]='#';
}
s1[k]=;
int mx=,id=;
for(int i=;i<k;i++)
{
mp[i]=mx>i?min(mp[*id-i],mx-i):;
while(s1[i+mp[i]]==s1[i-mp[i]])
mp[i]++;
if(i+mp[i]>mx)
{
mx=i+mp[i];
id=i;
}
}
}
int main()
{
while(~scanf("%s",s))
{
int l=strlen(s);
int ans=;
Manacher(l);
for(int i=;i<*l+;i++)
ans=max(ans,mp[i]-);
cout<<ans<<endl;
}
return ;
}
思路:
代码虽不长,主要需要理解的就是:
mp[i]=mx>i?min(mp[2*id-i],mx-i):1;
一般想法都是从1开始慢慢向两边移动来试探,而马拉车主要就是优化了每次试探P[i]的时候不一定需要从1开始,P[i]代表当前下标i为中心的字符串的回文串半径。
下图中 j 点代表是 i 关于 id 的对称点 ,j=2*id-i;
mx的对称点 j id i mx
id表示的就是最长回文串的中心,从图观察i与j关于Id对称,i是从2开始枚举过来已经经过了j的位置,那么j位置的最长回文串就可以确定了,如图所示;如果回文串完全被id的回文串所包围,那么根据对称原理i点的回文串的长度最少就是j点回文串的长度。即如果回文串的子串也是回文串,那么这个子串关于主串中心对称而得的子串也是一个回文串。接下来要确定的就是通过j点所能确定的i点回文串的长度最多是多少。首先应该明确,如果i点跑到mx(id点回文串所确定的范围边界)外面去了,那么j点无论如何缩减范围都不可能是id回文串的子串,就不满足上面加粗的结论了。就一定只能从1开始慢慢试探。这就是当mx < i的时候,MP[i] = 1的原因了。
还有两种情况
一种就是上图中,j所确定的回文串完全被包含,即整个串都是其子串。那么i的可确定回文串范围就是j的回文串范围,MP[i]就变成了MP[j]。
还有一种情况就是j的回文串已经超出了mx的范围
mx的对称点 j id i mx
对于绿线以外的区域完全未知,所以必须将MP[j]减去红线外的范围才是i的可确定范围。或者理解为只有两端都去掉外面的部分之后,剩下的才是id回文串的子串,才可以对称过去成为i的回文串。然后再在已确定的范围基础上向两边扩展。