前言

项目中主键ID生成方式比较多,但是哪种方式更能提高的我们的工作效率、项目质量、代码实用性以及健壮性呢,下面作了一下比较,目前雪花算法的优点还是很明显的。

优缺点比较

  • UUID(缺点:太长、没法排序、使数据库性能降低)
  • Redis(缺点:必须依赖Redis)
  • Oracle序列号(缺点:用Oracle才能使用)
  • Snowflake雪花算法,优点:生成有顺序的id,提高数据库的性能

Snowflake雪花算法解析

分布式Snowflake雪花算法-LMLPHP

雪花算法解析 结构 snowflake的结构如下(每部分用-分开):
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),

然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,

最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)

一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)。

Snowflake算法核心把时间戳,工作机器id,序列号组合在一起。

整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),

并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。

分布式Snowflake雪花算法代码

 public class SnowFlakeGenerator {

     public static class Factory {
/**
* 每一部分占用位数的默认值
*/
private final static int DEFAULT_MACHINE_BIT_NUM = 5; //机器标识占用的位数
private final static int DEFAULT_IDC_BIT_NUM = 5;//数据中心占用的位数 private int machineBitNum;
private int idcBitNum; public Factory() {
this.idcBitNum = DEFAULT_IDC_BIT_NUM;
this.machineBitNum = DEFAULT_MACHINE_BIT_NUM;
} public Factory(int machineBitNum, int idcBitNum) {
this.idcBitNum = idcBitNum;
this.machineBitNum = machineBitNum;
} public SnowFlakeGenerator create(long idcId, long machineId) {
return new SnowFlakeGenerator(this.idcBitNum, this.machineBitNum, idcId, machineId);
}
} /**
* 起始的时间戳
* 作者写代码时的时间戳
*/
private final static long START_STAMP = 1508143349995L; /**
* 可分配的位数
*/
private final static int REMAIN_BIT_NUM = 22; /**
* idc编号
*/
private long idcId; /**
* 机器编号
*/
private long machineId; /**
* 当前序列号
*/
private long sequence = 0L; /**
* 上次最新时间戳
*/
private long lastStamp = -1L; /**
* idc偏移量:一次计算出,避免重复计算
*/
private int idcBitLeftOffset; /**
* 机器id偏移量:一次计算出,避免重复计算
*/
private int machineBitLeftOffset; /**
* 时间戳偏移量:一次计算出,避免重复计算
*/
private int timestampBitLeftOffset; /**
* 最大序列值:一次计算出,避免重复计算
*/
private int maxSequenceValue; private SnowFlakeGenerator(int idcBitNum, int machineBitNum, long idcId, long machineId) {
int sequenceBitNum = REMAIN_BIT_NUM - idcBitNum - machineBitNum; if (idcBitNum <= 0 || machineBitNum <= 0 || sequenceBitNum <= 0) {
throw new IllegalArgumentException("error bit number");
} this.maxSequenceValue = ~(-1 << sequenceBitNum); machineBitLeftOffset = sequenceBitNum;
idcBitLeftOffset = idcBitNum + sequenceBitNum;
timestampBitLeftOffset = idcBitNum + machineBitNum + sequenceBitNum; this.idcId = idcId;
this.machineId = machineId;
} /**
* 产生下一个ID
*/
public synchronized long nextId() {
long currentStamp = getTimeMill();
if (currentStamp < lastStamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastStamp - currentStamp));
} //新的毫秒,序列从0开始,否则序列自增
if (currentStamp == lastStamp) {
sequence = (sequence + 1) & this.maxSequenceValue;
if (sequence == 0L) {
//Twitter源代码中的逻辑是循环,直到下一个毫秒
lastStamp = tilNextMillis();
// throw new IllegalStateException("sequence over flow");
}
} else {
sequence = 0L;
} lastStamp = currentStamp; return (currentStamp - START_STAMP) << timestampBitLeftOffset | idcId << idcBitLeftOffset | machineId << machineBitLeftOffset | sequence;
} private long getTimeMill() {
return System.currentTimeMillis();
} private long tilNextMillis() {
long timestamp = getTimeMill();
while (timestamp <= lastStamp) {
timestamp = getTimeMill();
}
return timestamp;
}
}
05-11 11:04
查看更多